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Abstract. In this paper, we propose a high-order accurate discontinuous Galerkin
(DG) method for the compressible Euler equations under gravitational fields on un-
structured meshes. The scheme preserves a general hydrostatic equilibrium state and
provably guarantees the positivity of density and pressure at the same time. Compar-
ing with the work on the well-balanced scheme for Euler equations with gravitation
on rectangular meshes, the extension to triangular meshes is conceptually plausible
but highly nontrivial. We first introduce a special way to recover the equilibrium state
and then design a group of novel variables at the interface of two adjacent cells, which
plays an important role in the well-balanced and positivity-preserving properties. One
main challenge is that the well-balanced schemes may not have the weak positivity
property. In order to achieve the well-balanced and positivity-preserving properties
simultaneously while maintaining high-order accuracy, we carefully design DG spa-
tial discretization with well-balanced numerical fluxes and suitable source term ap-
proximation. For the ideal gas, we prove that the resulting well-balanced scheme, cou-
pled with strong stability preserving time discretizations, satisfies a weak positivity
property. A simple existing limiter can be applied to enforce the positivity-preserving
property, without losing high-order accuracy and conservation. Extensive one- and
two-dimensional numerical examples demonstrate the desired properties of the pro-
posed scheme, as well as its high resolution and robustness.
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1 Introduction

In this paper, we develop high-order accurate positivity-preserving well-balanced dis-
continuous Galerkin (DG) methods for the compressible Euler equations with gravitation
on unstructured meshes. This model has many interesting astrophysical and atmospheric
applications, and takes the form

Ut+∇·F(U)=S(U,∇φ), (1.1)

in the d-dimensional case, with

U=




ρ
m

E


, F(U)=




ρu

ρu⊗u+pId

(E+p)u


, S(U,∇φ)=




0
−ρ∇φ
−m·∇φ


, (1.2)

where m=ρu denotes the momentum vector; ρ,u,p denote the fluid density, velocity and
pressure; Id is the identity matrix of size d; E= 1

2 ρ‖u‖2+ρe (e is specific internal energy)
is the non-gravitational energy; φ(x) is the time independent gravitational potential. The
pressure p is linked to the density ρ and the internal energy e. In this paper, we consider
the ideal gas with the following equation of state

p=(γ−1)ρe=(γ−1)

(
E−‖m‖2

2ρ

)
, (1.3)

where γ is the ratio of specific heats.
The Euler equations under gravitation fields admit hydrostatic equilibrium solutions,

in which the gravitational source term is exactly balanced by the flux gradient. Two
well-known hydrostatic equilibrium states are the isothermal and the polytropic equi-
libria. For these hyperbolic balance laws, the well-balanced schemes are introduced to
exactly preserve the equilibrium states at a discrete level. An important advantage of
the well-balanced schemes is that they can effectively and accurately resolve the nearly
equilibrium flows on relatively coarse meshes. These nearly equilibrium flows are small
perturbation of the hydrostatic equilibrium states, and often appear in the astrophysical
and atmospheric applications. Well-balanced methods for the shallow water equations
with source term have been extensively studied in the past few decades, see [1,4,7,18,21,
29,42,44] and the review papers [28,46]. Recently, research on well-balanced schemes for
the Euler equations with gravitation has attracted much attention. Such method was first
studied by LeVeque and Bale [30] based on the quasi-steady wave propagation meth-
ods designed for the shallow water equations. After that, extensive well-balanced meth-
ods for the Euler equations with gravitation have been designed and studied within the
framework of finite volume [2,3,5,8,9,11,17,22,25,27,31,38], finite difference [19,26,33,45],
finite element discontinuous Galerkin (DG) [10, 32, 34, 39] and gas-kinetic schemes [47],
and both first order and high order methods have been investigated. Recently, there are
increasing interests in designing well-balanced methods for general equilibrium state.
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In [27,39], well-balanced methods for moving equilibrium states of Euler equations with
gravity are studied based on explicitly given equilibria. The well-balanced methods
requiring no a-priori knowledge of the equilibrium were also studied in [3, 17, 26, 35].
In [39], the comparison of numerical performance of high order DG and well-balanced
DG methods is studied, which demonstrated the advantage of well-balanced methods in
multi-dimensional applications.

Another well-known numerical challenge in the numerical simulation of the Euler
equation appear when the density and/or pressure is small. Physically, both the density
and the pressure should stay positive, however, this may not be preserved numerically,
and the appearance of negative density or pressure may cause the breakdown of the nu-
merical simulations. Most commonly used high order numerical schemes for solving
hyperbolic conservation laws do not in general preserve the positivity of these quantities
automatically, and there have been many studies on the design of high order bound-
preserving numerical schemes for conservation laws, including the Euler equations. We
refer to the recent articles [23,24,36] and the references therein for the recent development
and discussion along this direction. Among these approaches, one idea is to utilize a sim-
ple scaling limiter [48], which maintains the local conservation and high order accuracy
of the original method. This technique has been used to design high-order positivity-
preserving DG schemes for Euler equations without source term [48] and with source
terms [49].

The high order finite element DG method will be considered in this paper. It is a pop-
ular high-order method for solving hyperbolic conservation laws. The Runge-Kutta DG
methods have been analyzed by Cockburn, Shu et al. in a series of papers, e.g. [12–16],
and have been successfully utilized in a wide range of applications. There have been
two approaches in the DG framework to obtain well-balanced property for the Euler
equations with gravity. The first approach is based on the reformulation of the source
term technique originally proposed for the shallow water equations in [43], and later
applied to the Euler equations in [10,19,31,32,45]. Recently, a positivity-preserving well-
balanced DG scheme has been developed in [40] for the Euler equations with gravity.
The well-balanced idea therein was adopted from this type of approach studied in [32],
with a properly modified Harten-Lax-van Leer-contact (HLLC) flux. Rigorous positivity-
preserving analyses are carried out based on some technical decompositions as well as
several key properties of the admissible states and HLLC flux. It was demonstrated
that a simple existing rescaling limiter can be used to effectively enforce the positivity-
preserving property, without losing high-order accuracy and conservation. The other
approach to achieve well-balanced property is to decompose the solution into equilib-
rium and non-equilibrium components, and then utilize the hydrostatic reconstruction
idea originally proposed in [1] and widely studied for the shallow water equations. The
well-balanced DG scheme based on the generalized hydrostatic reconstruction technique
has been developed for the Euler equations in [34] to preserve the isothermal and poly-
tropic equilibrium states.

In this paper, we propose to develop high-order positivity-preserving well-balanced
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DG schemes for the Euler equations with gravitation on unstructured meshes. The ob-
jectives of this paper are threefold. First, the well-balanced technique to be introduced is
built upon and improves the one studied in [34]. We have found out that, although the ac-
curacy test carried out in [34] demonstrated the optimal convergence rate of the proposed
well-balanced DG method, some extra tests with manufactured solutions suggest that
suboptimal convergence rate could be observed numerically. Therefore, we propose an
improvement of the source term approximation to ensure optimal convergence for all the
numerical tests we tried. In addition, we note that our proposed well-balanced methods
don’t need to assume an explicitly given equilibrium state, but only the a-priori knowl-
edge of it. Second, in order to achieve the well-balanced and positivity-preserving prop-
erties simultaneously while maintaining high-order accuracy, we carefully design DG
spatial discretization, and prove that the resulting well-balanced scheme, coupled with
strong stability preserving time discretizations, satisfies a weak positivity property. The
same simple existing limiter in [40] can be applied to enforce the positivity-preserving
property. We would like to remark that the rigorous proof of the weak positivity property
is very different from the one in [40], which could be useful for other applications. Last,
most of the works on well-balanced methods for Euler equations are introduced in one
dimension and two dimensions on rectangular meshes. In this paper, the unstructured
triangular meshes will be considered, which brings additional challenge in the design of
well-balanced methods.

The rest of this paper is organized as follows. In Section 2, we introduce the hy-
drostatic equilibrium states and some necessary notations for DG methods. The well-
balanced DG methods for the Euler equations with gravitation are presented in Section
3. In Section 4, we show that our scheme has a weak positivity property, and a simple
scaling limiter can be applied to preserve the positivity of density and the pressure under
suitable time step. In Section 5, we provide numerical examples both for the isothermal
and polytropic equilibrium states to verify the well-balanced property, high-order accu-
racy and positivity-preserving property in one dimension and two dimensions on trian-
gular meshes. Finally, we will give some concluding remarks in Section 6. In Appendix A
and B, we show proofs in Section 4 that are too long in the article to increase readability.

2 Mathematical model and notations

This section introduces the hydrostatic equilibrium states of (1.1), the admissible state set
and some necessary notations of the DG methods.

2.1 Hydrostatic equilibrium states

The model (1.1) admits the hydrostatic equilibrium states of the form

ρ=ρ(x), u=0, ∇p=−ρ∇φ, (2.1)
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where x∈Rd is the spatial variables. Two important equilibria arising in the applications
are the polytropic [25] and isothermal [41] hydrostatic states.

An ideal gas satisfies
p(x)=ρ(x)RT(x), (2.2)

with R being the universal gas constant. If the temperature T(x)≡T0 becomes a constant,
we have the following isothermal equilibrium state

ρ=ρ0 exp

(
− φ

RT0

)
, u=0, p= p0 exp

(
− φ

RT0

)
, (2.3)

with p0=ρ0RT0.
The other polytropic hydrostatic equilibrium is characterized by

p=κ0ργ, (2.4)

which will lead to the form of

ρ=

(
γ−1

κ0γ
(C−φ)

) 1
γ−1

, u=0, p=κ
1

1−γ

0

(
γ−1

γ
(C−φ)

) γ
γ−1

, (2.5)

where C and κ0 are both constants. An equivalent formulation is given by

u=0, h+φ=C, (2.6)

with h= e+ p
ρ being the specific enthalpy.

2.2 The admissible state

Physically, both the density ρ and the pressure p stay positive, therefore we can define
the physically admissible states

G :=

{
U=(ρ,m,E)T

∣∣∣ ρ>0, G(U) :=E−‖m‖2

2ρ
>0

}
, (2.7)

where the condition G(U)>0 is equivalent to the fact that the pressure p is positive.

2.3 Notations

We assume that the computational domain Ω ∈ Rd is partitioned into an unstructured
mesh T , such that

Ω=
⋃

{K | K∈T },

and we denote the volume of cell K by ∆K. The d+1 vertices of each cell K∈T are denoted
by xK,1,··· ,xK,d+1. We denote the cell boundary of the element K by

∂K :=
d+1⋃

ν=1

Fν
K, (2.8)
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where Fν
K, ν=1,··· ,d+1, are edges of K. We also denote the length of Fν

K by |Fν
K| and the

outward unit normal vector of K with respect to the edge Fν
K by n

ν
K.

The finite element space of discontinuous piecewise polynomial functions is defined
as

V k :=
{

ϕ(x)∈L2(Ω)
∣∣ ϕ(x)|K ∈Pk(K), ∀K∈T

}
, (2.9)

where Pk(K) is the space of polynomials with total degree up to k in cell K. For the system
of Euler equations, we define the finite element space

Π
k
d :=

{
(ϕ1,··· ,ϕd+2)

T|ϕi∈V k, for i=1,··· ,d+2
}

, (2.10)

which consists of d+2 components in the d-dimensional setting.

Since the values of ϕ∈V k can be discontinuous on the interface of two adjacent cells,
we define the limits at the cell boundary ∂K as

ϕintK(x) := lim
ǫ→0+

ϕ(x−ǫn
ν
K), ϕextK(x) := lim

ǫ→0+
ϕ(x+ǫn

ν
K), ∀x∈Fν

K.

With an abuse of notation, we denote the numerical solution by U. The standard semi-
discrete DG methods for (1.1) are given as follow: for any test function ϕ∈Π

k
d, find U∈Π

k
d,

such that

d

dt

∫

K
U ·ϕdx=

∫

K
F (U) :∇ϕdx−

∫

∂K
F̂

(
U

intK ,UextK ,n
)
·ϕds+

∫

K
S(U,∇φ)·ϕdx, (2.11)

where we employ the notation : such that A:B=∑i,j aijbij for any matrices A=
[
aij

]
and B=[

bij

]∈Rn×m. F̂ denotes the numerical flux, and the simple Lax-Friedrichs (LF) numerical
flux

F̂

(
U

int,Uext,n
)

:=
1

2

(
F

(
U

int
)
·n+F

(
U

ext
)
·n−α

(
U

ext−U
int
))

, (2.12)

is used in this paper, where

α= max
U∈{U int,Uext}

(
|u·n|+

√
γp/ρ

)
. (2.13)

3 The well-balanced DG methods

In this section, we present the well-balanced DG methods for the Euler equations with
gravitation. The proposed methods are established on triangular meshes, extending the
result in [34].
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3.1 Recovery of equilibrium states

We begin with the recovery of equilibrium states in the design of well-balanced methods.
At each time step, the equilibrium state will be recovered from the numerical solution
U. One useful tool is a projection into the DG space while matching the value at the cell
interface, presented in [6,34] for the one-dimensional (1D) case and two-dimensional (2D)
case with rectangular mesh. We refer to [34] for the detailed discussion and motivation
of such projection. For unstructured meshes, the same projection is no longer applicable
and a different projection will be defined below to achieve our goal.

One hopes that this projection can keep the function value unchanged at the boundary
of the cell K, and then we can recover a reference equilibrium state from the numerical so-
lution with the aid of the unchanged point values. There are many high-order projections
that meet this goal and we choose the continuous finite element projection to simplify the
well-balanced procedure. We note that although the continuous finite element projection
is used, our proposed scheme is based on DG methods and the projection is used for the
initialization and recovery of equilibrium states only.

For any function ϕ∈ L2(Ω), the projection P k ϕ utilized in this paper is given as fol-
lows:

P k ϕ(xK,i)= ϕ(xK,i), (3.1)

for any point {xK,i}b
i=1 in the given cell K, with b = (k+d)!

k!d! denoting the dimension of

d-dimensional space Pk. For one dimensional case, the points {xK,i}b
i=1 uniformly dis-

tribute over the entire cell K containing the two endpoints. For the cases of k = 1,2,3,
these points are the black solid dots in Fig. 1, and similar case for higher-order polynomi-
als can be derived. For two dimensional case, there are k+1 uniformly distributed points
on each triangle face Fν

K including the vertices of cell K, and other points, if existed, lo-
cates in the interior of the element K. For the cases of k=1,2,3, these points are the black
solid dots in Fig. 2, and similar case for higher-order polynomials can be derived. We
define the numerical initial condition of the DG methods as

U
0=P k

Uex(x,0), (3.2)

and note that these two functions share the same function values at the points {xK,i}b
i=1.

Another important component in the design of well-balanced methods is the intro-
duction of a “local” reference equilibrium state, denoted by U

r, which will be computed
at each time step following the procedure outlined below. The goal is to recover the
targeting (isothermal or polytropic) equilibrium, i.e., U

r =Ueq, when the numerical so-

K K K

Figure 1: The points
{

xK,i

}b
i=1 in the cell K are denoted by the black solid dots for one-dimensional case. From

left to right: the case of k=1,2,3 with k being the polynomial degree.
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K K K

Figure 2: The points
{

xK,i

}b
i=1 in the cell K are denoted by the black solid dots for two-dimensional case. From

left to right: the case of k=1,2,3 with k being the polynomial degree.

lution reaches the equilibrium state (i.e., U
n =P k

Ueq for some n with the same projec-

tion P k defined above). The first step is to pick one point (denoted by x0) from the set

{xK,i}b
i=1. In our numerical implementation, we choose the right endpoint of the cell for

one-dimensional case and the point xK,1 for two-dimensional case. Then the reference
equilibrium state U

r
K =(ρr

K,mr
K,Er

K)
T in each cell K is constructed as follows.

• For the isothermal equilibrium

ρr
K =exp

(
C1−φ

RT0

)
, u

r
K =0, pr

K =RT0exp

(
C1−φ

RT0

)
, (3.3)

where

T0=
pK(x0)

RρK(x0)
, C1=T0 logρK(x0)+φK(x0). (3.4)

• For the polytropic equilibrium

ρr
K =

(
γ−1

κγ
(C2−φ)

) 1
γ−1

, u
r
K =0, pr

K =κ
1

1−γ

(
γ−1

γ
(C2−φ)

) γ
γ−1

, (3.5)

where

C2=
γpK(x0)

(γ−1)ρK(x0)
+φK(x0), κ=

pK(x0)

(ρK(x0))
γ . (3.6)

Here UK = (ρK,mK,EK)
T denotes the numerical solution in the cell K. If other type of

equilibrium state is reached, similar approach can be used to construct U
r
K.

Remark 3.1. We note that our selected projection (3.1) is similar with the work in the
nodal DG framework [10], as one of the motivations is to ensure that the projection is
continuous on the cell boundaries so that the consistency of the numerical flux can be
used at the equilibrium state. One of the difference of these two works is that our ap-
proach is designed on unstructured triangular meshes and the Gauss–Lobatto–Legendre
points cannot maintain high-order accuracy and continuity on cell boundaries at the
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same time. Also, our work involves the recovery of equilibrium states, which leads to
different source term approximations. Such approach can aid in the positivity-preserving
property, which will be introduced in Section 4.

3.2 The well-balanced modification

The standard DG methods (2.11) may not be able to preserve the equilibrium state auto-
matically, and we will discuss the modification to achieve well-balanced property. We fol-
low the well-balanced approaches in [34], and take in consideration the additional chal-
lenge due to the unstructured mesh and the compatibility with the positivity-preserving
issue. We will introduce a series of boundary modifications and corresponding source
term approximation in this section and prove the weak positivity property in the next
section.

3.2.1 Decomposition

We first decompose the numerical solution U into two parts:

U
e=P k

U
r, U

f =U−U
e, (3.7)

where U
r is the “local” reference equilibrium state introduced in Section 3.1. In this

decomposition, U
e stands for the equilibrium component and U

f denotes the fluctuation
component. Note that U

e and U
f both belong to Π

k
d while U

r /∈ Π
k
d. Moreover, if the

initial condition Uex is in equilibrium state and the numerical initial condition is defined
as U=P k

Uex, we have U
e =U and U

f =0.

3.2.2 The source term approximation

Next, we will present the approximation of the source term
∫

K
S(U,∇φ)·ϕdx. In [34], the

source term approximation is designed as follows:

∫

K
S

(
U

f ,∇φh

)
·ϕdx−

∫

K
F (Ue) :∇ϕdx+

∫

∂K

(
F

(
U

e,intK

)
·n
)
·ϕintK ds, (3.8)

where S(U,∇φh) is decomposed into the sum of S
(
U

f ,∇φh

)
and S(Ue,∇φh), and the

approximation of the last term is converted into the flux, using equation satisfied by the
equilibrium state. Here, φh is the projection of φ in space V k (for example, the standard
L2 projection is often used). We have found out that, although the accuracy test carried
out in [34] demonstrated the optimal convergence rate of the proposed well-balanced
DG method with this choice of source term approximation, some additional numerical
tests with manufactured solutions suggest that suboptimal convergence rate could be
observed with this choice of source term approximation. Therefore, we propose an im-
provement of the source term approximation to ensure optimal convergence for all the
numerical tests we tried.
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Since φh is the projection of φ in space V k, taking its derivative in (3.8) might cause the
lost of optimal convergence rate. Utilizing the fact that U

r
K is the reference equilibrium

state, we have
∇φ=−∇pr

K/ρr
K, (3.9)

following the definition of the equilibrium state (2.1). Therefore, we introduce a projec-
tion with one degree higher

U
ẽ=P k+1

U
r (3.10)

to provide a high-order approximation of ∇φ, which is then defined as

∇φ≈−∇pẽ
K/ρe

K, (3.11)

where pẽ can be computed from U
ẽ. In addition, since U

r
K is in equilibrium state, we have

∫

K
S(Ur,∇φ)·ϕdx=−

∫

K
F (Ur) :∇ϕdx+

∫

∂K

(
F

(
U

r,intK

)
·n
)
·ϕintK ds, (3.12)

which yields the following high order approximation
∫

K
S(Ue,∇φ)·ϕdx≈−

∫

K
F (Ue) :∇ϕdx+

∫

∂K

(
F

(
U

ẽ,intK

)
·n
)
·ϕintK ds. (3.13)

With all these information, we can present our source term approximation SK as

SK =
∫

K
S

(
U

f ,−∇pẽ

ρe

)
·ϕdx−

∫

K
F (Ue) :∇ϕdx+

∫

∂K

(
F

(
U

ẽ,intK

)
·n
)
·ϕintK ds. (3.14)

Note that for the high-order accuracy, we change the approximation of the derivative of
φ in the first term of (3.14). In addition, we modify the cell boundary integral by utilizing
U

ẽ instead of U
e, for the purpose of simplifying the proof of the positivity-preserving

property. We refer the proof of Proposition 4.1 in Appendix B for the details.

3.2.3 Modified boundary values

We modify the boundary values to be used in the evaluation of well-balanced numerical
fluxes. The modified boundary values U

b,int/extK ∈G are given by

ρb,intK =max
(

0,ρ∗,intK

)
, ρb,extK =max

(
0,ρ∗,extK

)
,

m
b,intK =ρb,intK u

intK , m
b,extK =ρb,extK u

extK ,

Eb,intK =max
(

0,G(U∗,intK)
)
+

1

2
ρb,intK

∥∥∥u
intK

∥∥∥
2
,

Eb,extK =max
(
0,G(U∗,extK)

)
+

1

2
ρb,extK

∥∥u
extK
∥∥2

,

(3.15)

where the operator G is defined in Section 2.2, and U
∗,intK, U

∗,extK take the form

U
∗,intK =U

ẽ,intK+U
f ,intK , U

∗,extK =U
ẽ,extK+U

f ,extK. (3.16)
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Remark 3.2. One obvious difference between this approach and that in [34] lies in the
choice of cell boundary values defined in (3.15). They play an important role in the proof
of positivity-preserving property as outlined in the next section. In most cases, although
the cell boundary values U

int/extK ∈ G for the positivity-preserving schemes, the well-
balanced cell boundary values U

∗,int/ext may not belong to G. These cell boundary values
are chosen to be in the admissible state G and to keep the fluid velocity unchanged, which
is crucial and greatly simplifies the proof process for the positivity-preserving property.

Another important change is the introduction of a higher-order polynomial U
ẽ in the

source term approximation, which can prevent the well-balanced scheme from yielding
a sub-optimal convergence rate on some accuracy tests. We note that one can replace U

ẽ

with U
e in our well-balanced scheme and the obtained scheme still has the well-balanced

and positivity-preserving properties.

3.2.4 The semi-discrete well-balanced scheme

The semi-discrete well-balanced DG scheme is defined as follows: for any test function
ϕ∈Π

k
d, find U∈Π

k
d, such that

d

dt

∫

K
U ·ϕdx=LK (U) (3.17)

holds, with the right-hand side given by

LK (U)=
∫

K
F (U) :∇ϕdx−

∫

∂K
F̂

(
U

b,intK ,Ub,extK,n
)
·ϕds+SK. (3.18)

Here the source term approximation SK is defined in (3.14). The numerical flux F̂ is a
monotone numerical flux of F (U) with U

b,intK and U
b,extK defined in (3.15). In this paper,

the simple LF flux defined in (2.12) is used.
The fully discrete Runge-Kutta discontinuous Galerkin (RKDG) method can be ob-

tained by coupling the semi-discrete method with high-order strong stability preserving
(SSP) Runge-Kutta time discretizations [20]. The following third order SSP Runge-Kutta
methods:

∫

K
U

(1) ·ϕdx=
∫

K
U

n ·ϕdx+∆tLK (U
n),

∫

K
U

(2) ·ϕdx=
3

4

∫

K
U

n ·ϕdx+
1

4

(∫

K
U

(1) ·ϕdx+∆tLK

(
U

(1)
))

,

∫

K
U

n+1 ·ϕdx=
1

3

∫

K
U

n ·ϕdx+
2

3

(∫

K
U

(2) ·ϕdx+∆tLK

(
U

(2)
))

,

(3.19)

is used in this paper, where LK (U) is defined in (3.17).

Remark 3.3. One can observe that the proposed scheme (3.17) has a simpler numerical
flux, when compared with the well-balanced methods in [34]. We choose the special
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projection P k which is continuous at the cell boundaries if the numerical solution equals
the equilibrium states. This helps us to simplify the well-balanced numerical flux and the
proof of the positivity-preserving property in the next section. Similar numerical flux has
been introduced in [10] based on nodal DG methods.

3.3 Well-balanced property

Following the steps in Section 3.2.4, we establish a well-balanced RKDG method for the
Euler equations with gravitation. We first summarize all the variables in our scheme
before proving the well-balanced property:

• U
r
K /∈Pk (K), the recovery equilibrium, is defined for each cell K in Section 3.1;

• U
e
K =P k

U
r
K ∈Pk (K), is the equilibrium part of UK in (3.7);

• U
f
K =UK−U

e
K ∈Pk (K) is the fluctuation part of UK in (3.7);

• U
ẽ
K=P k+1

U
r
K∈Pk+1(K) is the projection of U

r
K into a polynomial with degree k+1,

defined in (3.10). It is introduced for the optimal source term approximation;

• U
b
K in (3.15) is defined on ∂K, and is used in the numerical flux.

Proposition 3.1. The RKDG scheme for the Euler equations with gravity described in
(3.17) coupled with (3.19) maintains the polytropic and the isothermal equilibrium state
exactly in discrete level.

Proof. Suppose that the initial condition Uex(x,0) is the polytropic or the isothermal equi-
librium state, or any other known zero-velocity equilibrium state. In order to prove our
methods can maintain the equilibrium state in discrete level, it is sufficient to show that
LK (U)=0.

By the definition of U
r in Section 3.1, we note that U

r = Uex under the assumption
that Uex are the equilibrium state. Therefore, we have U

e =U and U
f = 0 following the

definitions in (3.7). Moreover,

U
b,intK =U

b,extK =U
ẽ,intK , (3.20)

and the well-balanced numerical fluxes satisfy

F̂

(
U

b,intK ,Ub,extK,n
)
=F̂

(
U

b,intK ,Ub,intK,n
)
=F

(
U

ẽ,intK

)
·n, (3.21)

where the first equality is due to (3.20) and the second equality use the consistent prop-
erty of the numerical flux

F̂ (V ,V ,n)=F (V)·n.
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Therefore we have

LK (U)=
∫

K
F (U) :∇ϕdx−

∫

∂K

(
F

(
U

ẽ,intK

)
·n
)
·ϕintK ds+SK

=
∫

K
F (U) :∇ϕdx−

∫

∂K

(
F

(
U

ẽ,intK

)
·n
)
·ϕintK ds

−
∫

K
F (U) :∇ϕdx+

∫

∂K

(
F

(
U

ẽ,intK

)
·n
)
·ϕintK ds

=0,

where the first equality is due to the definition of LK (U) and (3.21), the second equality
is due to (3.14) and U

f = 0 and U
e =U. We conclude that LK (U) = 0 when the initial

condition Uex is the equilibrium state. When we apply the time discretization (3.19), the
numerical solution won’t change over time, which means that our method maintains the
equilibrium state exactly in the discrete level.

4 Positivity-preserving well-balanced DG methods

In this section, we show that the well-balanced DG scheme (3.17) has a weak positivity
property under a suitable condition for the time step. With such weak positivity, a simple
scaling limiter can enforce the positivity-preserving property without losing conservation
and high-order accuracy.

4.1 Properties of admissible states

We start by introducing some properties of the admissible states (2.7), which will be used
to prove the weak positive property. The first two properties are taken from [49].

Lemma 4.1 ([49]). The set of admissible states G defined in (2.7) is a convex set.

Lemma 4.2 ([49]). For any U∈G and ‖n‖=1, we have

U−ηF(U)·n∈G, (4.1)

if η∈R satisfies

α0|η|≤1, (4.2)

where

α0= |u·n|+ p

ρ
√

2e
. (4.3)

The next two lemmas are introduced to analyze the impact of the well-balanced nu-
merical fluxes in the proof of weak positivity property.
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Lemma 4.3. For any U, U
∗∈G with the same velocity u=u

∗, we have

U−ηU
∗∈G, (4.4)

if the positive constant η>0 satisfies

α0η<1, (4.5)

where

α0=max

(
ρ∗

ρ
,
p∗

p

)
.

Proof. It is straight forward to observe that the first component of U−ηU
∗ is positive:

ρ−ηρ∗>ρ− ρ∗

α0
≥ρ− ρ

ρ∗
ρ∗=0.

Therefore, we only need to show the pressure is also positive, which follows from the
following steps:

G (U−ηU
∗)=E−ηE∗− 1

2

‖m−ηm
∗‖2

ρ−ηρ∗
=E−ηE∗− 1

2
(ρ−ηρ∗)‖u‖2

=ρe+
1

2
ρ‖u‖2−η

(
(ρe)∗+

1

2
ρ∗‖u‖2

)
− 1

2
(ρ−ηρ∗)‖u‖2

=
p

γ−1
−η

p∗

γ−1
=

(
1−η

p∗

p

)
ρe>

(
1− 1

α0

p∗

p

)
ρe≥0,

where the second and third equalities utilize the fact that u = u
∗, the fourth and fifth

equalities follow from the definition of p=(γ−1)ρe, and the last two inequalities holds
under the condition (4.5). This finishes the proof.

Lemma 4.4. For any U, U
∗ ∈G with the same velocity u=u

∗ and ‖n‖=1, we have

U−ηF (U∗)·n∈G, (4.6)

if η>0 satisfies

α0α1η<1, (4.7)

where

α0=max

(
p∗

p
,
ρ∗

ρ

)
, α1= |u·n|+ p

ρ
√

2e
.

The proof of this lemma is shown in Appendix A.
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4.2 Positivity of the high order DG methods

In this subsection, we will prove a weak positivity property of the proposed well-balanced
DG scheme.

We begin with presenting the quadrature rule used to approximate the integrals.
Let us denote a set of 2D quadrature nodes with positive weights on the cell K by{

x̂
µ
K,ω̂

µ
K

}
1≤µ≤L

, and introduce the following quadrature rule

∫

K
g(U) dx=

L

∑
µ=1

ω̂
µ
K g
(

UK

(
x̂

µ
K

))
. (4.8)

On the edge Fν
K of the cell K, we introduce a set of 1D quadrature nodes with positive

weights by
{

x̃
µ
Fν

K
, ˜̟ µ

K

}
1≤µ≤N

, and the following quadrature rule

∫

Fν
K

g(U) ds=
N

∑
µ=1

˜̟ µ
Fν

K
g
(

U
intK

(
x̃

µ
Fν

K

))
. (4.9)

In our computation, the Gaussian quadrature rule is used for both 1D edge and 2D vol-
ume integrals. We choose enough quadrature points such that the quadrature rule is
exact for integrals of polynomials up to k on the cell K and k+1 on the face Fν

K.
Further, another special quadrature rule is needed (only) in the proof of weak posi-

tivity property. Such special d dimension quadrature on the cell K should satisfy:

• The quadrature rule has positive weights and is exact for integrals of polynomials
of degree up to k on the cell K;

• The set of the quadrature points must include all the quadrature points x̃
µ
Fν

K
, µ =

1,··· ,N on the edges Fν
K ∈∂K, ν=1,··· ,d+1.

In one dimension, we note that the Gauss-Lobatto quadrature rule is an eligible choice.
For two-dimensional case on triangular meshes, some examples of these quadrature rules
are presented in [50]. This quadrature rule ensures that the cell average of the computa-
tional variable can be written as follows,

ŪK=
d+1

∑
ν=1

N

∑
µ=1

ω̃
µ
Fν

K
U

intK

(
x̃

µ
Fν

K

)
+

L̃

∑
µ=1

ω̃
µ
KUK

(
x̃

µ
K

)
, (4.10)

where
{

x̃
µ
Fν

K

}
are quadrature points on the boundary of K and

{
x̃

µ
K

}
are quadrature points

inside K, and
{

ω̃
µ
Fν

K

}
and

{
ω̃

µ
K

}
are the corresponding quadrature weights.

We define the following set

SK =
{

x̃
µ
Fν

K
, µ=1,··· ,N, ν=1,··· ,d+1

}⋃{
x̃

µ
K, µ=1,··· , L̃}

⋃{
x̂

µ
K, µ=1,··· ,L},
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that includes all the quadrature points discussed above, and the set of all the quadrature
points on the boundary of K

QK =
{

x̃
µ
Fν

K
, µ=1,··· ,N, ν=1,··· ,d+1

}
. (4.11)

Again, we would like to emphasize that the quadrature rule (4.10) is introduced to be
used in the proof, and only the quadrature rule (4.8) for the volume integral on K and the
quadrature rule (4.9) for the line integral over ∂K are applied in the implementation of
our proposed scheme.

Next, we are ready to present the weak positivity property of our scheme.

Proposition 4.1. Consider the well-balanced numerical methods in (3.18)-(3.19). If
U

n
K(x)∈G holds for any x∈SK, we have

Ū
n+1
K ∈G, (4.12)

under the CFL-type condition

α̂0∆t<1, (4.13)

with

α̂0= α̂F+ α̂S,

α̂F = α̂1αmax
ν,µ

˜̟ µ
Fν

K
|Fν

K|
ω̃

µ
Fν

K
∆K

, α̂1=max
x∈QK

(
ρb

K(x)

ρn
K(x)

,
pb

K(x)

pn
K(x)

)
,

α̂S =max
x∈SK

∥∥∇pẽ
K(x)/ρe

K(x)
∥∥

√
2en

K(x)
,

and α being the parameter of LF flux defined in (2.13).

The proof of this proposition is shown in Appendix B.

Remark 4.1. We note that the term

max
ν,µ

˜̟ µ
Fν

K
|Fν

K|
ω̃

µ
Fν

K
∆K

in the definition of α̂F depends on the chosen quadrature rule. A few examples are pro-
vided below to demonstrate its value.

• In the one-dimensional case, if the Gauss-Lobatto quadrature rule is used, we have

ω̃
µ
Fν

K
=

1

6
, for k=2,3, ω̃

µ
Fν

K
=

1

12
, for k=4,5,
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and ˜̟ µ
Fν

K
=1 and |Fν

K|=1. Therefore,

α̂F =6α̂1α/∆K , for k=2,3

and

α̂F =12α̂1α/∆K , for k=4,5.

• In the two-dimensional case, we can use the quadrature rule shown in [50, Figure
3.2]. For k=2, we have

max
ν,µ

˜̟ µ
Fν

K

ω̃
µ
Fν

K

=9,

which means that

α̂F =
9α̂1αmaxν |Fν

K|
∆K

.

For example with a 30-60-90 triangle, we have

max
ν

|Fν
K|

∆K
=2

√
2√
3

∆K
, α̂F ≈

19.3α̂1α√
∆K

.

Remark 4.2. In the one-dimensional case, one can show that α̂1 ≡1, which simplifies the
definition of α̂0. This follows from the fact that both U

ẽ and U
e share the same value with

U
r at the cell boundaries, which consist of the end points of the interval and equal to

the point set QK in the 1D setting. Therefore, one can conclude that U
∗,intK(x)=U

intK(x)
for any x ∈QK, and also U

b,intK(x) =U
intK(x) due to the assumption of Proposition 4.1

that U
intK(x) ∈ G. Similarly, U

b,extK(x) = U
extK(x) can be obtained, which leads to the

conclusion that α̂1≡1.

In the two-dimensional case, the value of α̂1 is more complicated, as the sets of
quadrature points and projection points may not be the same. But we can show that
α̂1=1+O(hk+1) with k being the polynomial degree, namely, it will decrease to 1 as mesh
is refined. In the numerical examples, we also track and report the value of α̂1, which
confirms this result.

4.3 Positivity-preserving limiter

If the weak positivity property holds, i.e. ŪK∈G at the time step tn+1, a simple positivity-
preserving limiter [50] can be applied to enforce that UK(x)∈G, ∀x∈SK. We define the
positivity-preserving limiting operator Θ as

ΘUK = θ
(2)
K

(
ÛK(x)−ŪK

)
+ŪK, (4.14)
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with

θ
(2)
K =min

(
1,

G (ŪK)−ǫ

G (ŪK)−minx∈SK
G (ÛK(x)

)
)

, (4.15)

ÛK(x)=(ρ̂K(x),mK(x),EK(x))T, (4.16)

ρ̂K = θ
(1)
K (ρK− ρ̄K)+ ρ̄K, (4.17)

θ
(1)
K =min

(
1,

ρ̄K−ǫ

ρ̄K−minx∈SK
ρK(x)

)
. (4.18)

Here ǫ is a sufficiently small positive number, introduced to avoid the effect of the round-
error. For example, we can take ǫ=min

(
10−13,ρ̄K,G (ŪK)

)
. The limiter Θ doesn’t destroy

the high-order accuracy and keeps the mass conservation. We refer to [50] for the details
and the proof.

We apply the limiter Θ to UK at each Runge-Kutta stage in our methods. Based on
Proposition 4.1, the resulting DG methods have the positivity-preserving property under
suitable time step conditions.

4.4 Algorithm

Finally, we summarize the steps of our high-order positivity-preserving well-balanced
DG scheme as follows:

1. For any given initial condition Uex(x,0), we project it into the piecewise polynomial
space Π

k
d to obtain the numerical initial condition:

U
0=P k(Uex(x,0)) ; (4.19)

2. At each Runge-Kutta stage, a reference equilibrium state U
r is computed following

the idea in Section 3.1. We then decompose the numerical solution U into two parts:
the equilibrium part U

e and the fluctuation part U
f . We also compute U

ẽ following
the definition in Eq. (3.10);

3. Update U by applying the positivity-preserving limiter Θ defined in (4.14):

Ũ=ΘU. (4.20)

We still denote them by U for simplicity;

4. Evaluate the modified cell boundary values (3.15) and apply the LF numerical flux
(2.12). We note that for the steady state solutions, the modified cell boundary values
U

b,intK =U
b,intK and the dissipation term in LF flux turns out to be zero due to the

consistency of LF flux;

5. Compute the source term approximation in (3.14);
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6. Evaluate the spatial operator LK (U) in (3.17), and apply the SSP Runge-Kutta
method (3.19) to advance in time. For each Runge-Kutta stage, we repeat the steps
2-5.

5 Numerical examples

In this section, we provide some one- and two-dimensional numerical results to demon-
strate the numerical performance of the proposed scheme. In most of our examples, we
use P2 piecewise polynomials unless otherwise stated. In most of the two-dimensional
examples, the uniform criss-triangles are used. In all the examples, the time step size is
set as

∆t=0.8/α̂0, (5.1)

where α̂0 satisfies the time step constraints (4.13) in all cells K for one-dimensional and
two-dimensional cases.

5.1 Numerical examples in one dimension

Example 5.1. Test for the accuracy in one dimension.

In this example, we test the orders of accuracy of the proposed methods in the one-
dimensional setting. We follow the setup in [33] and consider the simple steady-state
exact solution given by

ρ(x,t)=exp(−x),

u(x,t)=0,

p(x,t)=(1+x)exp(−x),

on a unit domain [0,1] with gravitational field φ(x)= 1
2 x2. The exact solutions are applied

at the ghost cells near the boundaries. We set the stop time T = 0.1. We choose the
isothermal equilibrium recovery in this example. The L1 errors and orders for cases k=
1,2,3 are shown in Table 1, from which we can see that our scheme have the desired high
order accuracy.

Example 5.2. Additional 1D accuracy test for comparison with the scheme in [34].

Optimal convergence rate of the proposed positivity-preserving well-balanced DG
method was observed in the previous example, for which the method in [34] also demon-
strated optimal convergence. In this example, we will provide another accuracy test, and
show that these two methods demonstrate different convergence rates for this example.
We consider a manufactured exact solution of the form

ρ(x,t)=exp(x−t),

u(x,t)=1,

p(x,t)=1,
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Table 1: Example 5.1, L1 errors and orders of accuracy with the case k=1,2,3.

k=1 ρ ρu E

N L1 error order L1 error order L1 error order

40 2.60E-05 - 6.69E-06 - 4.69E-05 -

80 6.51E-06 2.00 1.67E-06 2.00 1.17E-05 2.00

160 1.63E-06 2.00 4.16E-07 2.00 2.94E-06 2.00

320 4.07E-07 2.00 1.04E-07 2.00 7.34E-07 2.00

k=2 ρ ρu E

N L1 error order L1 error order L1 error order

10 5.07E-06 - 2.13E-06 - 8.57E-06 -

20 6.35E-07 3.00 2.60E-07 3.04 1.08E-06 2.99

40 7.93E-08 3.00 3.22E-08 3.01 1.35E-07 3.00

80 9.91E-09 3.00 4.01E-09 3.01 1.69E-08 3.00

k=3 ρ ρu E

N L1 error order L1 error order L1 error order

10 5.41E-08 - 5.05E-08 - 1.43E-07 -

20 3.08E-09 4.13 2.65E-09 4.25 7.60E-09 4.24

40 1.91E-10 4.01 1.76E-10 3.91 4.78E-10 3.99

80 1.19E-11 4.00 1.09E-11 4.01 2.97E-11 4.01

which satisfies the modified Euler equation given by

Ut+∂xF(U)=S(U,φx)+Φ, (5.2)

with

φ(x)=exp(x), Φ=(0,exp(2x−t),exp(2x−t))T .

The computational domain is set as [0,1]. The exact solutions are applied at the ghost cells
near the boundaries. We set the stop time T = 1. We choose the isothermal equilibrium
recovery in this example. The L1 errors and orders for cases k=1,2,3 of our proposed DG
methods are shown in Table 2, from which we observe the desired high order accuracy
for all choices of k. The results of the DG methods in [34] are shown in Table 3, and
suboptimal convergence rates are observed for k=1 (the variables ρ, ρu and E), k=2 (the
variables ρ, ρu and E) and k= 3 (the variables ρ, ρu and E). This justifies the high order
modification of the source term approximation, described in the Section 3.2.

Example 5.3. Accuracy test for low density.

In this example, we test the orders of accuracy when the solution involves low density
and the positivity-preserving limiter takes effect in one dimension. We consider another
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Table 2: Example 5.2, L1 errors and orders of accuracy with the case k=1,2,3.

k=1 ρ ρu E

N L1 error order L1 error order L1 error order

40 1.08E-03 - 3.07E-04 - 3.46E-03 -

80 2.64E-04 2.04 7.73E-05 1.99 8.25E-04 2.07

160 6.12E-05 2.11 1.88E-05 2.04 1.92E-04 2.10

320 1.47E-05 2.06 4.62E-06 2.03 4.61E-05 2.06

k=2 ρ ρu E

N L1 error order L1 error order L1 error order

10 9.14E-04 - 2.61E-04 - 3.00E-03 -

20 1.05E-04 3.12 2.65E-05 3.30 3.27E-04 3.20

40 1.20E-05 3.14 2.67E-06 3.31 3.51E-05 3.22

80 1.43E-06 3.07 3.12E-07 3.10 4.10E-06 3.10

k=3 ρ ρu E

N L1 error order L1 error order L1 error order

10 1.66E-05 - 4.94E-06 - 5.60E-05 -

20 6.82E-07 4.60 1.94E-07 4.67 2.29E-06 4.61

40 3.59E-08 4.25 1.03E-08 4.25 1.21E-07 4.24

80 1.91E-09 4.23 5.72E-10 4.16 6.63E-09 4.19

Table 3: Example 5.2, L1 errors and orders of accuracy with the case k=1,2,3, of the DG method in [34].

k=1 ρ ρu E

N L1 error order L1 error order L1 error order

40 6.95E-03 - 2.55E-03 - 2.29E-02 -

80 3.59E-03 0.95 1.32E-03 0.95 1.18E-02 0.96

160 1.77E-03 1.02 6.57E-04 1.00 5.83E-03 1.01

320 8.68E-04 1.03 3.26E-04 1.01 2.87E-03 1.02

k=2 ρ ρu E

N L1 error order L1 error order L1 error order

10 6.03E-04 - 2.42E-04 - 2.04E-03 -

20 1.41E-04 2.10 5.85E-05 2.05 4.63E-04 2.14

40 3.37E-05 2.07 1.41E-05 2.05 1.11E-04 2.06

80 7.87E-06 2.10 3.39E-06 2.06 2.61E-05 2.09

k=3 ρ ρu E

N L1 error order L1 error order L1 error order

10 1.64E-05 - 4.61E-06 - 5.42E-05 -

20 1.28E-06 3.68 3.93E-07 3.56 4.14E-06 3.71

40 1.39E-07 3.21 4.08E-08 3.26 4.34E-07 3.25

80 1.64E-08 3.08 4.90E-09 3.06 5.16E-08 3.07
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Table 4: Example 5.3, L1 errors and orders of accuracy with the case k=1,2,3.

k=1 ρ ρu E

N L1 error order L1 error order L1 error order

20 2.13E-01 - 3.41E-01 - 3.99E-01 -

40 4.23E-02 2.33 6.95E-02 2.29 7.76E-02 2.36

80 9.60E-03 2.14 1.63E-02 2.09 1.83E-02 2.09

160 2.30E-03 2.06 3.96E-03 2.04 4.45E-03 2.04

k=2 ρ ρu E

N L1 error order L1 error order L1 error order

10 6.44E-02 - 1.47E-02 - 1.74E-01 -

20 6.69E-03 3.27 1.58E-03 3.22 2.12E-02 3.03

40 5.38E-04 3.64 1.36E-04 3.54 1.66E-03 3.68

80 7.12E-05 2.92 9.54E-06 3.83 1.55E-04 3.41

k=3 ρ ρu E

N L1 error order L1 error order L1 error order

10 1.59E-02 - 9.94E-03 - 4.10E-02 -

20 8.41E-04 4.24 2.75E-04 5.17 2.01E-03 4.35

40 5.28E-05 3.99 1.42E-05 4.28 1.18E-04 4.09

80 3.13E-06 4.08 8.09E-07 4.13 7.38E-06 3.99

exact solution of equation (5.2):

ρ(x,t)=1+0.99sin(x−t),

u(x,t)=1,

p(x,t)=1,

with γ=1.4,

φ(x)= x, Φ=(0,1+0.99sin(x−t),1+0.99sin(x−t))T .

The computation domain is set as [0,2π] and periodic boundary condition is applied.
The minimum density for this test is 0.01. Without the positivity-preserving limiter, the
standard DG scheme has trouble in long time simulation. We can use this example to
test the accuracy when the positivity-preserving limiter takes effect. In this test, we set
the stop time t= 4 and choose the isothermal equilibrium recovery in this example. In
Table 4, the L1 errors and orders for k=1,2,3 of our proposed DG methods are shown. We
observe the optimal convergence rate for all variables and polynomial degree k, which
means that the positivity-preserving limiter does not affect the high-order accuracy.

Example 5.4. Test for the well-balanced property of the 1D polytropic equilibrium.
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Table 5: Example 5.4, L1 errors for the polytropic equilibrium with different precisions.

N precision ρ ρu E

100
double 9.31E-15 3.41E-15 9.97E-15

quadruple 9.51E-33 2.67E-33 8.57E-33

200
double 1.40E-14 5.13E-15 1.53E-14

quadruple 1.53E-32 4.38E-33 1.62E-32

This example is used to verify that the proposed DG scheme can maintain the poly-
tropic equilibrium exactly for the 1D Euler equations and its ability to capture small per-
turbation of such equilibrium. We consider the following equilibrium state

ρ(x)=(1−0.4x)1.5,

u(x)=0,

p(x)=(1−0.4x)2.5,

(5.3)

on a computational domain [0,2] with the linear gravitational field φ(x)= x and γ=5/3.
We set the stop time T=2 and the L1 errors of the numerical solutions with different pre-
cisions are shown in Table 5. It can be observed that our scheme maintains the polytropic
equilibrium state at a discrete level, and this confirms its well-balanced property.

Next, we impose a perturbation to the polytropic equilibrium (5.3) and test the capa-
bility of our scheme in capturing the propagation of this small perturbation. At the left
boundary x=0, we add a periodic velocity perturbation of the form

u(0,t)=Asin(4πt),

with a small perturbation A = 10−6. The stop time is set as T = 1.5, and 100 uniform
cells are used. The numerical solutions are shown in Fig. 3. For comparison, we in-
clude the reference solutions computed on the refined mesh with N = 2000, and also
show the results of the third order traditional non-well-balanced (non-WB) DG method
in the same figure. We can observe that the well-balanced DG method produces numer-
ical results consistent with the reference solutions, while the solutions of the non-WB
method does not agree well with the reference solution, especially in the region near the
right boundary. In addition, we record the CPU time of our proposed scheme and stan-
dard DG scheme for this test. The CPU time of standard DG scheme is 3.78s and that of
our proposed scheme is 4.94s. We find that although our proposed scheme carries some
overhead and is slower than standard methods, the numerical solution of our proposed
scheme performs much better than standard DG scheme.

Example 5.5. Test for the well-balanced property of the 1D isothermal equilibrium

In this example, we will demonstrate that our scheme can maintain the isothermal
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Figure 3: Example 5.4: The comparison of numerical solution with small amplitude waves A= 10−6 and 100
cells at T=1.5.

Table 6: Example 5.5, L1 errors for the isothermal equilibrium with different precisions.

N precision ρ ρu E

100
double 1.24E-14 6.88E-15 4.70E-14

quadruple 7.03E-33 5.67E-33 1.63E-32

200
double 1.29E-14 6.74E-15 3.37E-14

quadruple 2.45E-32 1.38E-32 1.11E-31

equilibrium state exactly. We consider the following isothermal equilibrium

ρ(x)=exp(−x),

u(x)=0,

p(x)=exp(−x),

(5.4)

on a computational domain [0,1] with γ= 1.4 and gravitational field φ(x)= x. The stop
time is set as T = 2. The L1 errors of the numerical solutions with different precisions
are shown in Table 6. It can be observed that our scheme maintains the equilibrium state
with a round-off error, and this confirms its well-balanced property.

Example 5.6. Rarefaction test with low density and low pressure.

In this test, we consider an extreme rarefaction test to demonstrate that our scheme
can keep the density and pressure positive. The initial condition is a Riemann problem
given by

ρ=7, p=0.2, u=

{
−1 x<0,

1 x>0,
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Figure 4: Example 5.6, numerical solutions at T=0.6 with 800 cells (blue squares) and 6400 cells (black solid
lines). Bottom right is the figure of time stepping size ∆t versa time t∈ [0,0.6].

with γ= 1.4 on the computational domain [−1,1], and the gravitation field φ= x2/2 is
considered. The outflow boundary conditions are imposed at both ends. The final time is
set T=0.6 and 800 uniform cells are used. We choose the isothermal equilibrium recovery
in this example. The numerical solutions at the final time are shown in Fig. 4, and we also
include the reference solutions obtained with refined 6400 cells for comparison. We can
see that the low pressure and the low density are both captured well by our methods.
We also show the time stepping size at each time in the simulation in Fig. 4. We can see
that our scheme can maintain sufficiently large time stepping size, which is similar to the
standard DG scheme, in the whole simulation even the numerical solution involves low
density and pressure. The minimum of density and pressure are shown in Table 7, which
are indeed greater than 0.
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Table 7: Example 5.6, the minimums of density and pressure for rarefaction test.

N 800 6400

ρ 9.95E-03 1.89E-03

p 2.89E-04 2.84E-05

5.2 Numerical examples in two dimensions

Example 5.7. Test for the accuracy in two dimensions.

In this example, we test the orders of accuracy in two-dimensional case when the
triangular meshes are used. We consider the exact solution given by

ρ(x,y,t)=1+0.2sin(π(x+y−2t)),

u(x,y,t)=1,

v(x,y,t)=1,

p(x,y,t)=4.5+2t−x−y+0.2cos(π(x+y−2t))/π,

on a square domain [0,2]×[0,2] with the gravitational field satisfying φx = φy = 1 and
γ= 1.4. We apply the exact solutions at the boundaries. We set the stop time as T= 0.1.
We choose the isothermal equilibrium recovery in this example. Both the P1 and P2

piecewise polynomials are considered. The L1 errors and the corresponding orders are
shown in Table 8, from which we can see that our scheme have the desired high order
accuracy.

Table 8: Example 5.7, two dimensional L1 errors and orders of accuracy.

k=1 ρ ρu ρv E

N L1 error order L1 error order L1 error order L1 error order

200 2.70E-03 - 2.65E-03 - 2.65E-03 - 2.98E-03 -

800 6.76E-04 2.00 6.65E-04 1.99 6.65E-04 1.99 7.41E-04 2.01

3200 1.68E-04 2.00 1.66E-04 2.00 1.65E-04 2.00 1.84E-04 2.01

12800 4.21E-05 2.00 4.14E-05 2.00 4.14E-05 2.00 4.58E-05 2.00

k=2 ρ ρu ρv E

N L1 error order L1 error order L1 error order L1 error order

200 1.13E-04 - 1.14E-04 - 1.14E-04 - 1.01E-04 -

800 1.64E-05 2.79 1.63E-05 2.80 1.63E-05 2.80 1.50E-05 2.75

3200 2.19E-06 2.90 2.18E-06 2.91 2.18E-06 2.91 2.06E-06 2.86

12800 2.82E-07 2.96 2.80E-07 2.96 2.80E-07 2.96 2.70E-07 2.93

Example 5.8. Test for the well-balanced property of the 2D polytropic equilibrium.
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Figure 5: Example 5.8, the triangular meshes. Left: 1222 triangles for the well-balanced test; Right: 4826
triangles for the small perturbation test.

Table 9: Example 5.8, L1 errors for the 2D polytropic equilibrium with different precisions on triangular meshes.

precision
L1 error

ρ ρu ρv E

double 9.21E-16 1.10E-15 1.25E-15 2.12E-16

quadruple 9.36E-34 1.19E-33 1.20E-33 2.04E-34

This example is used to verify that our scheme can maintain the polytropic equilib-
rium for 2D Euler equations. We take γ=2 and consider the polytropic equilibrium given
by

ρ(r)=
sin(αr)

αr
,

u(r)=0,

v(r)=0,

p(r)=ρ(r)2,

with r =
√

x2+y2 and α =
√

2π. The gravitational field φ(r) =− 2sin(αr)
αr is considered.

Since this equilibrium state is axisymmetric, the computational domain is set as a disk
centered at (0,0) with radius 0.5. We choose a mesh with 1222 unstructured triangles
as shown in the left part of Fig. 5. We set the stop time T = 2. The L1 errors of the
numerical solutions with different precisions are shown in Table 9. It can be observed
that our scheme maintains the polytropic equilibrium state with a round-off error, and
this confirms its well-balanced property.

Next we impose a small perturbation to the polytropic equilibrium and test the ca-
pability of our scheme in capturing the propagation of the small perturbation. A small
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Figure 6: Example 5.8, contour plots of the numerical results on 4826 triangular cells at t=0.2.

Gaussian hump perturbation is added to the pressure such that

p(r)=ρ(r)2+Aexp(−100r2).

where the amplitude parameter A is set as 10−6. The stop time is set as T = 0.2. The
computational domain is discretized by a mesh with 4826 triangles mesh, as shown in the
right part of Fig. 5. We show the velocity and pressure perturbation of the well-balanced
DG methods at the final time in Fig. 6. For comparison, we also show the results of
the third order traditional non-WB DG method. We can observe that the well-balanced
DG method can capture the small perturbation well, while the solutions of the non-WB
method produces the non-physical wave with a much larger amplitude.
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Example 5.9. Test for the well-balanced property of the 2D isothermal equilibrium.

In this example, we aim to preserve the isothermal equilibrium, which takes the form

ρ(x,y)=ρ0 exp
(
− ρ0g

p0
(x+y)

)
, u=0, p(x,y)= p0 exp

(
− ρ0g

p0
(x+y)

)
,

with ρ0=1.21, p0=1 and γ=1.4. The gravitational field is given by φ(x,y)=g(x+y) with
g= 1. The computational domain is set as Ω= [0,1]2, which is discretized by 800 trian-
gular meshes. We set the stop time T= 5. The L1 errors of the numerical solutions with
different precisions are shown in Table 10. It can be observed that our scheme maintains
the equilibrium state with a round-off error, and this confirms its well-balanced property.

Table 10: Example 5.9, L1 errors for the 2D isothermal equilibrium with different precisions on triangular meshes.

precision
L1 error

ρ ρu ρv E

double 6.26E-16 9.67E-16 9.38E-16 9.16E-16

quadruple 5.56E-34 8.74E-34 9.33E-34 7.91E-34

Next, we impose a small perturbation to the isothermal equilibrium and test the ca-
pability of our scheme in capturing the propagation of the small perturbation. A small
Gaussian hump perturbation is added to the pressure such that

p(x,y)=
p0

ρ0
ρ(x,y)+ǫexp(−121((x−0.3)2+(y−0.3)2)).

where the amplitude parameter ǫ is set as 10−3. The stop time is set as T=0.15 on 12800
triangular meshes. The numerical solutions of both well-balanced and non-WB methods
are provided in Fig. 7, which shows that our numerical solution capture the propagation
of the small perturbation correctly.

Example 5.10. Rarefaction test with low density and low pressure in two dimensions.

We use this 2D example to demonstrate the positivity-preserving property of the pro-
posed DG method. We follow the 1-2-3 rarefaction test in [37], and consider the initial
condition given by

ρ(x,y)=exp(−2.5φ(x,y)), p(x,y)=0.4exp(−2.5φ(x,y))

u(x,y)=

{
−2 x<0.5,

2 x>0.5,
, v(x,y)=0,

with the gravitational field φ(x,y) = 1
2((x−0.5)2+(y−0.5)2) on the domain Ω = [0,1]2.

Transmissive boundary conditions are considered. The computational domain is dis-
cretized by 12800 triangular meshes, and the stop time is set as T = 0.1. We choose the
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Figure 7: Example 5.9, perturbation on the isothermal hydrostatic solution with ǫ=0.001 at time t=0.15. Left:
the pressure perturbation with 20 uniformly spaced contour lines from −0.0003 to 0.0003; Right: the density
perturbation with 20 uniformly spaced contour lines from −0.001 to 0.0002.

CFL number to be 0.03. The numerical solutions of density, pressure and velocity at the
final time are shown in Fig. 8. The minimum of density ρ is 5.35E-03 and the minimum
of pressure p is 3.44E-03 at time T=0.1. We choose the isothermal equilibrium recovery
in this example. We can observe that the low pressure and the low density are both cap-
tured well by our positivity-preserving DG methods. We show the time stepping size ∆t
versa time t in Fig. 8 and calculate the maximum of α̂1 in (4.13) that

max
∀K,t≤0.1

α̂1=1.00126,
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Figure 8: Example 5.10, numerical solutions by 12800 triangular meshes at T=0.1.

which means that the time stepping size of our proposed scheme is similar to the stan-
dard DG scheme and α̂1 very close to constant 1 in the simulation.

Example 5.11. Inertia-gravity waves.

The inertia-gravity wave [19] is a two-dimensional benchmark for atmospheric mod-
els that involves the evolution of a potential temperature perturbation. Follow the setup,
the domain is chosen to be 300000×10000. Periodic boundary conditions are applied
on the left and right boundaries and inviscid wall boundary conditions are applied on
the bottom and top boundaries. The initial flow is a perturbation added to a stratified
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atmosphere in hydrostatic balanced background, and is given by

ρ(x,y)=
p0

Rθ(x,y)

(
1+

(γ−1)g2

γRT0N 2

(
exp

(
−N 2

g
y
)
−1
)) 1

γ−1

,

u(x,y)=20,

v(x,y)=0,

p(x,y)= p0

(
1+

(γ−1)g2

γRT0N 2

(
exp

(
−N 2

g
y
)
−1
)) γ

γ−1

,

where the reference pressure and temperature at y = 0 are p0 = 105 and T0 = 300, the
buoyancy frequency N =0.01, the gravitational force g=9.8, universal gas constant R=
287.058 and γ=1.4. The potential temperature θ takes the form

θ(x,y)= θ0+∆θ(x,y),

where θ0=T0exp(N
2

g y),

∆θ(x,y)= θc sin
(πy

hc

)(
1+
( x−xc

ac

)2
)−1

,

with θc =0.01, hc =10000, ac =5000, xc=100000 and π being the Archimedes constant.
We simulate this problem up to T = 3000s on a grid of 30000 triangular meshes. We

choose the polytropic equilibrium recovery in this example. Fig. 9 shows the potential
temperature perturbation ∆θ at different times T=0,1000,2000,3000. We observe that the
evolution of potential temperature perturbation is correctly resolved, and they agree well
with the results in [19].

Example 5.12. A shock wave diffracts at a convex corner.

A shock wave diffracting at a sharp convex corner [16, 50] is a classical benchmark
problem in computational fluid dynamics. When the Mach number of the shock wave
becomes larger, low density or pressure may appear. In this example, we study a Mach
10 shock diffracting at a 120◦ convex corner. We choose uniform right triangular meshes
to discretize the domain, and use the shortest side of the triangular element to represent
the mesh size. See Fig. 10 for the illustration of the computational domain with mesh size
17/30. The initial condition is a pure right moving shock with Mach 10, initially located
at the boundary x=3.4 and 6≤y≤11, moving into an undisturbed air ahead of the shock
with

φ(x,y)=0.01x, ρ(x,y)=1.4, m(x,y)=0, p(x,y)=1.0476−φ(x,y). (5.5)

The boundary conditions are inflow at x=3.4,6≤y≤11; outflow at x=13.6,0≤y≤11 and
y=0,0≤ x≤13.6 and y=11,3.4≤ x≤13.6; reflective at other boundaries. We choose the
isothermal equilibrium recovery in this example.
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Figure 9: Example 5.11, potential temperature perturbation contour plots at time T=0,1000,2000,3000 (from
top to bottom).
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Figure 10: Example 5.12, the computational domain with triangular meshes of size 17/30.

Table 11: Example 5.12, the minimums of density and pressure for three different mesh sizes.

mesh size 17
300

17
600

17
1200

ρ 0.0144 0.0841 0.0947

p 1.73E-03 6.08E-04 8.27E-06

Our proposed DG scheme exhibits good robustness in the whole simulation. The
density and pressure generated by the positivity-preserving DG methods at time T=0.9
are plotted in Fig. 11, with three different mesh sizes (of 17/300, 17/600 and 17/1200,
respectively). We also report the minimal values of the density and pressure in Table 11.
These numerical results are very consistent with the previous study in [50], and the pro-
posed positivity-preserving limiter works well to maintain the positivity of the density
and pressure.

6 Conclusion

In this paper, we developed the positivity-preserving well-balanced DG methods for the
Euler equations with gravitation on triangular meshes. Our methods can preserve the
polytropic and the isothermal equilibrium state. A modified LF well-balanced numeri-
cal flux together with a novel source term approximation are introduced to ensure the
high order accuracy and the well-balanced property of the proposed methods. We also
prove that our well-balanced scheme enjoys a weak positivity property, which implies
that a scaling existing limiter can enforce the positivity-preserving property without los-
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(a) density: mesh size 17/300 (b) pressure: mesh size 17/300

(c) density: mesh size 17/600 (d) pressure: mesh size 17/600

(e) density: mesh size 17/1200 (f) pressure: mesh size 17/1200

Figure 11: Example 5.12, 15 uniform contour plots of density from 0.5 to 7.5 and pressure from 0.5 to 112 at
time T=0.9.
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ing conservation and high-order accuracy. Moreover, our scheme is presented based on
the triangular meshes. Both 1D and 2D numerical examples were provided to demon-
strate the good features of our scheme. We plan to explore the extension of the proposed
methods in the moving mesh framework in the future.
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Appendices

A Proof for Lemma 4.4

Following the definition of α0 and α1, one can conclude that

1−η
ρ∗

ρ
u·n>1−ηα0 |u·n|>1− 1

α1
|u·n|>0,

1−η
p∗

p
u·n>1−ηα0 |u·n|>1− 1

α1
|u·n|>0.

Therefore, the first component of the vector in (4.6) stays positive since

ρ−ηm
∗ ·n=

(
1−η

ρ∗

ρ
u·n

)
ρ>0,

by utilizing the assumption u = u
∗. Next, we show that the pressure is also positive,

which follows from the following derivation:

G (U−ηF (U∗)·n)=E−η(E∗
u
∗+p∗u

∗)·n− 1

2

‖m−η((u∗ ·n)m
∗+p∗n)‖2

ρ−ηρ∗u∗ ·n

=
p

γ−1
+

1

2
ρ‖u‖2−η

((
p∗

γ−1
+

1

2
ρ∗‖u‖2

)
u+p∗u

)
·n− 1

2

‖ρu−η(u·n)ρ∗u−ηp∗n‖2

ρ−ηρ∗u·n
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=ρe+
1

2
ρ‖u‖2−ηu·n

(
p∗

p
ρe+

1

2

ρ∗

ρ
ρ‖u‖2+p∗

)

− (ρ−ηρ∗u·n)2‖u‖2−2η(ρ−ηρ∗u·n)p∗u·n+η2(p∗)2

2(ρ−ηρ∗u·n)

=ρe

(
1−η

p∗

p
u·n

)
+

1

2
ρ‖u‖2

(
1−η

ρ∗

ρ
u·n

)
−ηp∗u·n

− 1

2
ρ‖u‖2

(
1−η

ρ∗

ρ
u·n

)
+ηp∗u·n− η2(p∗)2

2(ρ−ηρ∗u·n)

=ρe


1−η

p∗

p
u·n− η2(p∗)2

2
(

1−η
ρ∗
ρ u·n

)
ρ2e


>ρe


1− 1

α1
|u·n|− (ηα0 p)2

2
(

1− 1
α1
|u·n|

)
ρ2e




>ρe


1− 1

α1
|u·n|−

(
1
α1

p
)2

2
(

1− 1
α1
|u·n|

)
ρ2e




=
ρe

2
(

1− 1
α1
|u·n|

)
ρ2e

(
2

(
1− 1

α1
|u·n|

)2

ρ2e−
(

1

α1
p

)2
)

=0,

where we again use the assumption that u=u
∗. The last equality follows from the defi-

nition of α1 which leads to

1− 1

α1
|u·n|= 1

α1

p

ρ
√

2e
.

Therefore we can conclude (4.6) and this finishes the proof. �

B Proof for Proposition 4.1

Since the SSP Runge-Kutta methods can be written as the convex combination of the
forward Euler methods, we only need to prove the result for the semi-discrete scheme
(3.17) coupled with forward Euler time discretization, which takes the form

∫

K
U

n+1
K ·ϕdx=

∫

K
U

n
K ·ϕdx+∆tLK (U

n), (B.1)

with LK (U
n) defined in (3.18).

By taking the test function ϕ=1, one can obtain the equation satisfied by Ū
n+1
K , which
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can be further decomposed into two parts as follows:

Ū
n+1
K = Ū

n
K+λ

(
−
∫

∂K
F̂

(
U

b,intK ,Ub,extK,n
)

ds

+
∫

K
S

(
U

f ,−∇pẽ

ρe

)
dx+

∫

∂K
F

(
U

ẽ,intK

)
·nds

)

=W1+W2,

with

W1 = ζŪ
n
K−λ

∫

∂K
F̂

(
U

b,intK ,Ub,extK,n
)

ds, (B.2)

W2 =ϑŪ
n
K+λ

(∫

K
S

(
U

f ,−∇pẽ

ρe

)
dx+

∫

∂K
F

(
U

ẽ,intK

)
·nds

)
, (B.3)

where

ζ=
α̂F

α̂0
, ϑ=

α̂S

α̂0
, satisfying ζ+ϑ=1, (B.4)

and λ= ∆t
∆K

. To show that Ū
n+1
K ∈G, we only need to prove that W1, W2 ∈G, since G is a

convex set.

• Step 1: The proof of W1∈G.

Since U
n
K are polynomials on K, we can rewrite the average Ū

n
K as (4.10). Following

quadrature rule (4.9) and the LF flux defined in (2.12), we can rewrite W1 as

W1 =
1

2

(
2ζ

d+1

∑
ν=1

N

∑
µ=1

ω̃
µ
Fν

K
U

n,intK

(
x̃

µ
Fν

K

)
+2ζ

L̃

∑
µ=1

ω̃
µ
KU

n
K

(
x̃

µ
K

)

−λ
d+1

∑
ν=1

N

∑
µ=1

˜̟ µ
Fν

K
|Fν

K|
(

F

(
U

b,intK

(
x̃

µ
Fν

K

))
·n+F

(
U

b,extK

(
x̃

µ
Fν

K

))
·n

−αU
b,extK

(
x̃

µ
Fν

K

)
+αU

b,intK

(
x̃

µ
Fν

K

)))

= ζ
L̃

∑
µ=1

ω̃
µ
KU

n
K

(
x̃

µ
K

)
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+
λ

2

d+1

∑
ν=1

N

∑
µ=1

˜̟ µ
Fν

K
|Fν

K|
(

αU
b,extK

(
x̃

µ
Fν

K

)
−F

(
U

b,extK

(
x̃

µ
Fν

K

))
·n

+ζ
ω̃

µ
Fν

K

λ ˜̟ µ
Fν

K
|Fν

K|
U

n,intK

(
x̃

µ
Fν

K

)
−αU

b,intK

(
x̃

µ
Fν

K

)

+ζ
ω̃

µ
Fν

K

λ ˜̟ µ
Fν

K
|Fν

K|
U

n,intK

(
x̃

µ
Fν

K

)
−F

(
U

b,intK

(
x̃

µ
Fν

K

))
·n
)

=: I+II+III+IV,

where |Fν
K| denotes the area of edge Fν

K. Since the admissible state G is convex and W1 is
decomposed into four parts, the goal is now to prove that all of these four parts belong
to G. Note that the parameters ζ, λ, |Fν

K|, and the quadrature weights ω̃
µ
K, ω̃

µ
Fν

K
, ˜̟ µ

Fν
K

are all

positive, hence we only need to prove the following four claims:

1. U
n
K

(
x̃

µ
K

)
∈G.

This follows from the assumption that

U
n
K(x)∈G, for x∈SK.

2. αU
b,extK

(
x̃

µ
Fν

K

)
−F

(
U

b,extK
(

x̃
µ
Fν

K

))
·n∈G.

Using the definition of α in (2.13), we have

α>
∣∣∣ub,extK ·n

∣∣∣+
√

γpb,extK/ρb,extK >

∣∣∣ub,extK ·n
∣∣∣+

pb,extK

ρb,extK

√
2eb,extK

, (B.5)

since γ−1
γ = 1− 1

γ < 2 holds for any γ ≥ 1. It indicates that η = 1/α satisfies the
constraints in (4.2). By utilizing Lemma 4.2 and the fact

U
b,extK

(
x̃

µ
Fν

K

)
∈G,

we have

αU
b,extK

(
x̃

µ
Fν

K

)
−F

(
U

b,extK

(
x̃

µ
Fν

K

))
·n∈G. (B.6)

3. ζ
ω̃

µ

Fν
K

λ ˜̟ µ

Fν
K
|Fν

K|U
n,intK

(
x̃

µ
Fν

K

)
−αU

b,intK

(
x̃

µ
Fν

K

)
∈G.
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Following the definition of α̂1, α̂0, α̂F in (4.13) and that of ζ in (B.4), we have

ζ
ω̃

µ
Fν

K

λ ˜̟ µ
Fν

K
|Fν

K|
=

α̂F

α̂0

∆Kω̃
µ
Fν

K

∆t ˜̟ µ
Fν

K
|Fν

K|
≥ α̂1α

α̂0∆t

> α̂1α≥max




ρb,intK

(
x̃

µ
Fν

K

)

ρn,intK

(
x̃

µ
Fν

K

) ,
pb,intK

(
x̃

µ
Fν

K

)

pn,intK

(
x̃

µ
Fν

K

)


α, (B.7)

which leads to

max




ρb,intK

(
x̃

µ
Fν

K

)

ρn,intK

(
x̃

µ
Fν

K

) ,
pb,intK

(
x̃

µ
Fν

K

)

pn,intK

(
x̃

µ
Fν

K

)




αλ ˜̟ µ
Fν

K
|Fν

K|
ζω̃

µ
Fν

K

<1.

This suggests that

η=
αλ ˜̟ µ

Fν
K
|Fν

K|
ζω̃

µ
Fν

K

satisfies the constraints in (4.5). By combining Lemma 4.3 with the fact that

U
n,intK

(
x̃

µ
Fν

K

)
, U

b,intK

(
x̃

µ
Fν

K

)
∈G,

we have

ζ
ω̃

µ
Fν

K

αλ ˜̟ µ
Fν

K
|Fν

K|
U

n,intK

(
x̃

µ
Fν

K

)
−U

b,intK

(
x̃

µ
Fν

K

)
∈G.

4. ζ
ω̃

µ

Fν
K

λ ˜̟ µ

Fν
K
|Fν

K|U
n,intK

(
x̃

µ
Fν

K

)
−F

(
U

b,intK

(
x̃

µ
Fν

K

))
·n∈G.

The combination of Eqs. (B.7) and (B.5) leads to

ζ
ω̃

µ
Fν

K

λ ˜̟ µ
Fν

K
|Fν

K|
> α̂1α> max

(
ρb,intK

ρn,intK
,

pb,intK

pn,intK

)(∣∣∣un,intK ·n
∣∣∣+

pn,intK

ρn,intK

√
2en,intK

)∣∣∣∣∣
x̃

µ

Fν
K

,

which indicates that

η=
λ ˜̟ µ

Fν
K
|Fν

K|
ζω̃

µ
Fν

K

satisfies the constraints in (4.7). By utilizing Lemma 4.4 and the fact

U
n,intK

(
x̃

µ
Fν

K

)
, U

b,intK

(
x̃

µ
Fν

K

)
∈G,
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we conclude that

ζ
ω̃

µ
Fν

K

λ ˜̟ µ
Fν

K
|Fν

K|
U

n,intK

(
x̃

µ
Fν

K

)
−F

(
U

b,intK

(
x̃

µ
Fν

K

))
·n∈G.

The combination of all the claims above yields the conclusion that W1∈G.

• Step 2: The proof of W2 ∈G.

Notice that m
ẽ,intK ≡0 and

F

(
U

ẽ,intK

)
=




0
(γ−1)Eẽ,intK Id

0


,

which suggests that every component of F
(
U

ẽ,intK
)

is a polynomial in ∂K. Therefore it
can be exactly integrated by the quadrature rule (4.9), and one can use the integration by
parts and the 2D quadrature rule (4.8) to rewrite W2 as

W2=ϑŪ
n
K+λ

(∫

K
S

(
U

f ,−∇pẽ

ρe

)
dx+

∫

K
∇·F

(
U

ẽ
)

dx

)

=
L

∑
µ=1

ω̂
µ
K

(
ϑU

n
K

(
x̂

µ
K

)
+∆t

(
∇·F(U ẽ

K

(
x̂

µ
K

))
+S

(
U

f
K

(
x̂

µ
K

)
,−∇pẽ

K

(
x̂

µ
K

)

ρe
K

(
x̂

µ
K

)
)))

.

Since G is convex and all the quadrature weights are positive, it is sufficient to prove, for
µ=1,··· ,L,

W
µ
2 =ϑU

n
K

(
x̂

µ
K

)
+∆t

(
∇·F

(
U

ẽ
K

(
x̂

µ
K

))
+S

(
U

f
K

(
x̂

µ
K

)
,−∇pẽ

K

(
x̂

µ
K

)

ρe
K

(
x̂

µ
K

)
))

∈G.

The first component of W
µ
2 reduces to ϑρn

K

(
x̂

µ
K

)
which is automatically positive. In order

to show that G
(
W

µ
2

)
>0, we have

G
(
W

µ
2

)
= ϑEn

K+∆tm
f
K ·

∇pẽ
K

ρe
K

−

∥∥∥∥ϑm
n
K+∆t

(
∇pẽ

K+ρ
f
K
∇pẽ

K
ρe

j

)∥∥∥∥
2

2ϑρn
K

∣∣∣∣∣∣∣∣∣
x̂

µ
K
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= ϑEn
K+∆tm

f
K ·

∇pẽ
K

ρe
K

−

∥∥∥ϑm
n
K+∆t

ρn
K

ρe
K
∇pẽ

K

∥∥∥
2

2ϑρn
K

∣∣∣∣∣∣∣
x̂

µ
K

= ϑ(ρe)n
K+∆tm

f
K ·

∇pẽ
K

ρe
K

−∆t
m

n
K

ρe
K

·∇pẽ
K−∆t2

∥∥∥ ρn
K

ρe
K
∇pẽ

K

∥∥∥
2

2ϑρn
K

∣∣∣∣∣∣∣
x̂

µ
K

= ϑ(ρe)n
K

(
1−∆t2

∥∥∇pẽ
K/ρe

K

∥∥2

2ϑ2en
K

) ∣∣∣∣∣
x̂

µ
K

,

where ρe+ρ f = ρn is used in the second equality, and m
f =m

n is used to derive the last
equality. Following the definition of ϑ in (B.4) and α̂0, α̂S in (4.13), we have

∆t2

∥∥∇pẽ
K/ρe

K

∥∥2

2ϑ2en
K

=(α̂0∆t)2

∥∥∇pẽ
K/ρe

K

∥∥2

2α̂2
Sen

K

<1,

hence it follows that G
(
W

µ
2

)
>0, i.e., W2∈G. �
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scheme for Euler equations with gravity which is well-balanced for general equations of
state and grid systems. Communications in Computational Physics, 2019, 26(2): 599-630.
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