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1 Introduction

Active cell movement plays a crucial role in the life of living organisms, and in
many situations the movement is guided by extracellular chemical signals. Sperm
cells swim long distances to fertilize an egg, and this process is directed by chemical
substances released from the outer surface of the egg [1]. Neutrophils and fibrob-
lasts move into a wound to stop infection and rebuild the tissue, and this process
is orchestrated by a number of chemical signals [2]. Cancer cells can migrate away
from a primary tumor to invade other tissues and cause cancer metastasis [3]. In
bioremediation, bacteria are used to clean waste water because they migrate towards
certain toxins and degrade them [4]. The directed movement of cells or organisms
in response to extracellular chemical signals is called “chemotaxis”.

To understand the role of chemotaxis in multicellular processes, it is crucial to
develop quantitative and predictive mathematical models to describe chemotaxis of
cell populations. Detailed individual-based models have been developed to incorpo-
rate data in cell signaling, movement, as well as cell-cell interaction. This approach
can faithfully replicate the biology, but due to the large number of cells involved
and the complexity of the intracellular dynamics, they are computationally inten-
sive and frequently become intractable. Alternatively, simplified PDE models have
also been used to describe the spatial-temporal dynamics of the cell densities. This
approach is appealing and convenient because of the variety of mathematical tools
available in simulation and analysis of PDE models. However, these models often
rely on phenomenological assumptions of cell fluxes which cannot be easily justified
experimentally. Multiscale methods to embed data at the cellular and sub-cellular
processes into PDE models of the cell population dynamics must be developed to
combine the strengths of these two approaches.
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Significant progress has been made along this line for bacterial chemotaxis,
which is the most basic and best understood form of chemotaxis. In this chapter,
I review results that focus on the derivation of PDE models for bacterial chemotaxis
from individual-based models that describe single cell movement as a velocity jump
process and integrates intracellular signaling as an internal ODE system. Through
numerical examples, I illustrate the application scope and limitations of the well-
known Patlak-Keller-Segel chemotaxis equation in modeling the bacteria population
dynamics. The mathematical framework developed for bacterial chemotaxis can be
extended to similar biological systems and serve as a classic example for multiscale
modeling in biology.

2 Biological background

Chemotaxis of run-and-tumble bacteria has been extensively studied over the past
50 years. Examples of such bacteria include Escherichia, Salmonella, Bacillus,
Rhodobacter, and Pseudomonas [5, 6, 7, 8]. Among them the best understood is
the model system Escherichia coli [9, 10, 8], which is described below in detail.
Chemotaxis of other bacteria is similar but not identical to that of E. coli.

2.1 Single cell movement

E. coli has a cylindrical cell body that is 1-2 µm-long and several helical flagella
that project away from the cell body in all directions. Each flagellum can be rotated
by a flagellar motor embedded in the cell membrane either clockwise or counter-
clockwise. If all the flagella are rotated counterclockwise (CCW), they form a sin-
gle bundle and push the cell forward in a long smooth “run” at a speed s = 10 - 30
µm/s; if some flagella are rotated clockwise (CW), these flagella disengage from
the bundle causing the cell to stop and “tumble” in place. The cell moves by ran-
domly alternating smooth runs and reorienting tumbles. In the absence of a chemical
signal gradient, the mean run time is 1 s and mean tumble time is 0.1 s. However, if
the cell is exposed to a signal gradient, it alters the rotation pattern of each flagellar
motor so that the run time is extended when the cell moves up (down) the gradient
of a chemoattractant (chemorepellent).

2.2 Intracellular signaling

The rotation of a flagellar motor is controlled by the intracellular chemotaxis path-
way shown in Figure 1. The transmembrane chemoreceptors form stable ternary
complexes with the signaling proteins CheA and CheW, and cluster at one pole
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of the cell body. CheA is an auto-kinase, and its activity is reduced if attractant
molecules bind to the associated receptor but can be restored if the methylation level
of the receptor increases. CheA is also a kinase for the response regulators CheY and
CheB. The phosphorylated form CheYp binds to the flagella motor, which increases
the probability of CW rotation and triggers tumbling. CheBp and CheR change the
methylation state of the receptor at a slower rate: CheR methylates it and CheBp
demethylates it.

Fig. 1 The chemotaxis signaling pathway for the model bacterium E. coli. Transmembrane
chemoreceptors function as trimers of dimers with ligand-binding domains on the peri-plasmic
side and signaling domains on the cytoplasmic side. Methylation sites of receptors appear as white
dots on the receptors. The cytoplasmic signaling proteins are represented by single letters, e.g., A
= CheA. Red (blue) components promote CCW (CW) rotation of flagellar motors. Reprinted from
[11] with permission.

Upon ligand binding, the kinase activity of CheA is reduced, thus CheYp de-
creases rapidly, and the cell tends to run for longer. This process, called excitation,
occurs within fractions of seconds. Simultaneously, CheBp is reduced but CheR is
not affected, thus the receptor methylation level increases, until the activity of CheA
is restored to its pre-stimulus level. This process, called adaptation, takes seconds to
minutes, depending on the nature of the signal. We note that excitation and adapta-
tion are two concurrent processes that affect each other, specifically, adaptation acts
as a negative feedback to excitation and allows the cell to subtract away background
signal and respond to further signal changes.

Bacterial chemotaxis involves multiple time scales. Ligand binding to chemore-
ceptors on the cell membrane, change of kinase activity, and phosphorylation reac-
tions inside a cell occur within fractions of seconds. Methylation and demethylation
of the receptors that cause adaptation of a cell occur on a time scale of seconds.
The adaptation time scale is the slowest time scale for intracellular dynamics. It is
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intrinsically determined by the intracellular signaling network, and reflects the time
scale of methylation and demethylation.

3 Individual-based models

Chemotaxis plays a critical role in self-organization patterns formed in bacterial
colonies, e.g., traveling bands, aggregates, swarm rings [12, 13, 14, 15, 16]. To
understand the interplay of different mechanisms in the pattern formation process,
individual-based models have been developed to couple descriptions of single cell
movement (Sec 3.1) and cell signaling (Sec 3.2), as well as cell growth and the
dynamics of extracellular signals [17, 18, 19].

When the cell density is sufficiently low, cell-cell mechanical interactions can be
neglected and cell movement can be modeled as velocity jump processes without
collisions. This situation may still involve a large population of cells. For example,
in case that the cell volume fraction is 0.1% and the medium has dimension 1cm
× 1cm × 1mm, assume that the volume of a single cell is approximately 1µm3,
then the number of cells is approximately 108. When the cell density becomes high,
cells can also interact with each other through the surrounding fluid. Individual-
based models have been developed for such situations by treating cells as particles
without intracellular dynamics [20, 21, 22, 23, 24, 25, 26, 27]. Our review focuses
on the low cell density situation.

3.1 Single cell movement modeled as a velocity jump process

The run-and-tumble movement of a single cell is frequently modeled as a velocity-
jump process [28, 17, 29]. A velocity jump process is a stochastic process in which
the velocity of an individual jumps instantaneously at random time points. The ve-
locity jumps can be characterized by two quantities: a turning rate function which
specifies when the next velocity jump occurs and a turning kernel which specifies
the probability density of the new velocity given the velocity prior to the jump.

3.1.1 A base model

For bacterial chemotaxis, the mean tumble time is much smaller than the mean run
time, thus the tumbling phase of the cell movement is usually ignored. The speed of
the cell is usually assumed to be constant, and thus the velocity space is a sphere

V = s0∂B1
0, (1)
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where s0 is the typical speed of the cell and ∂B1
0 is the unit sphere centered at the

origin.
Under this simplification, the cell movement can be modeled as a sequence of

runs connected by instantaneous reorientations. Because CheYp binding suppresses
CCW rotation of the flagella which in turn induce tumbling, the turning rate λ is an
increasing function of intracellular CheYp concentration yp, i.e.,

λ = λ (yp). (2)

The turning kernel is usually assumed to only depend on the angle between v and
v′, denoted as θ ,

T (v,v′) = h(θ). (3)

Recordings of cell trajectories in free space shows that E. coli has a slight directional
persistence towards the previous direction after a tumble [30, 31], thus h(θ) is a
decreasing function. To conserve probability, one must have∫

V
T (v,v′)dv = 1. (4)

Under the above assumptions, the movement of a single cell is described by the
following SDE system {

dx = vdt,

dv = (ζ −v)dY (t,λ ),
(5)

where ζ is a random variable with probability density given by T (·,v) and Y (t,λ )
is an inhomogeneous Poisson process with intensity given by λ (yp). The system is
coupled with equations for cell signaling through the variable yp.

3.1.2 Inclusion of cell tumbling

More detailed models have been developed to incorporate a finite tumbling phase
explicitly. This was achieved by describing the cell movement as a velocity jump
process with a moving state and a resting state. Denote the rate for a running cell to
stop and tumble by λ and the rate for a tumbling cell to start running by µ , i.e.,

Run
λ−−⇀↽−−
µ

Tumble.

The transition rates λ and µ depend on the rotation state of all the flagella around
the cell body, which in turn depends on intracellular CheYp concentration yp. Thus
one has

λ = λ (yp), µ = µ(yp).

The switching behavior of a single flagellum between CW and CCW rotations
has been measured under different CheYp concentrations in [32]. Specifically, ex-
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perimental data was collected on the CW bias (PCW ) and the switching frequency
(F) of a single flagellar motor (Fig. 2A-B, dots), which revealed the ultrasensitivity
of the motor to CheYp.

Assume the direction switches between CCW and CW are first order reactions
with rates λ f and µ f , i.e.,

CCW
λ f−−⇀↽−−
µ f

CW.

The Cluzel data on PCW and F can then be transformed into data for λ f and µ f (Fig.
2C-D, dots). The transformation is based on the relations

λ f (1−PCW ) = µ f PCW , F =
2λ f µ f

λ f +µ f
.

or equivalently,

λ f =
F

2(1−PCW )
, µ f =

F
2PCW

.

This data can be fitted by requiring λ f to be an increasing function of yp and µ f
a decreasing function of yp (Fig. 2). The fitting in [33] leads to

λ f = a1 exp(b1Yp),

µ f = a2 exp
(
− (b2−Yp)

4/c
)
,

(6)

where a1, b1, a2, b2 and c are constants given in the caption of Fig. 2. Please note that
these fitting results (solid curves) are much better than the original fitting method
suggested in [32], which fits PCW by a Hill function with hill coefficient 10.3 and
Km = 3.1µM and the derivative of the function for F (dashed curves).

To calculate the cell-level rates λ and µ , one way is to use a voting process:
assume that all the flagella of a cell rotate independently and if the majority of them
rotate CCW simultaneously then the cell runs forward, otherwise it tumbles in place
[19]. In reality different flagella can interact with each other through the surrounding
fluid, and the significance of the hydrodynamic interaction needs to be investigated
in the future.

Assume that each cell has n f flagella and in order for a cell to ”run” at least w
flagella are needed to rotate CCW simultaneously. The probability of having exactly
i flagella rotating CCW is

Pi
CCW =

(
n f

i

)(
µ f

λ f +µ f

)i(
λ f

λ f +µ f

)n f−i

. (7)

The probability for the cell to be in the run and tumble states are given by

Prun =

n f

∑
i=w

Pi
CCW , Ptumble = 1−Prun. (8)
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Fig. 2 Parameter fitting for the transition rates λ f and µ f as a function of CheYp (yp). The
dots are from experimental data extracted from Fig. 2 in [32]. The solid lines are calculated
using the formula (6). Parameters: a1 = 0.0174001s−1, b1 = 1.32887µM−1, a2 = 12.0809s−1,
b2 =−5.83762µM, c = 2892.12. The dotted lines are calculated using the original fitting method
suggested in [32].

The probability for multiple flagella switching rotation simultaneously at a specific
time is much smaller than that for a single one. Hence, the transition from run to
tumble primarily occurs when the cell has exactly w flagella rotating CCW and one
of them switches to CW, i.e.,

λ = wλ f ·
Pw

CCW
Prun

. (9)

Similar argument leads to

µ = (n f −w+1)µ f ·
Pw−1

CCW
Ptumble

. (10)
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Fig. 3 plots these rates determined with n f = 8 and w = 5 and the time fraction that
a cell spent running. It shows that the multi-flagella voting process help increase the
sensitivity of the cell movement to intracellular CheYp level. It also showed that if
the internal CheYp is perturbed far away from its baseline level (∼ 3µM), then the
cell can be locked in the run or tumble state.
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Fig. 3 A. The transition rates λ and µ as a function of CheYp determined by the voting process.
B. Time fraction of cell running and flagella CCW rotation. Parameters: n f = 8, w = 5.

3.2 Intracellular signaling modeled by an internal ODE system

Extensive effort has been put into modeling the intracellular chemotactic signaling
of E. coli in the past 50 years, and the hand-in-hand interplay between experiments
and modeling has led to profound quantitative understanding of the signaling dy-
namics (see reviews [34, 35]). These models usually adopt a system of ODEs to
track the concentrations of intracellular proteins over time.

dy
dt

= f
(
y,S(x, t)

)
, (11)

Here x ∈ RN is the cell position, and S(x, t) is the extracellular signal along the cell
trajectory. To simulate a large population of cells, often a simplified ODE model
was used for intracellular signaling instead. A key requirement of the model is that
it must contain one variable that demonstrates the fast excitation and slow adaptation
behavior as of CheYp. The intracellular CheYp concentration yp is either an explicit
equation in the system or represented as a function of the variable y. In either case,
one has

yp = yp(y). (12)
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3.2.1 A cartoon model

The simplest dynamical system of this kind is the linear cartoon model used in
[36, 37],

dy1

dt
=

S− y1− y2

te
,

dy2

dt
=

S− y2

ta
,

(13)

where te� ta are the excitation and adaptation time constants. Here y1 is the variable
that excites and fully adapts to its steady state 0 after a step signal change, and yp
can be identified as −y1. This cartoon model has facilitated the development of
multiscale methods to derive PDE models for cell population dynamics, which will
be discussed in Sec 4.

3.2.2 A coarse-grained model

A conceptual model that incorporates the main structure of the excitation-adaptation
network was introduced in [38]. The wiring diagram is given in Fig. 4A. S is the
external signal measured by the fraction of receptor occupancy. E is the excitation
process representing the phosphorylation of CheY by CheAp. A is the adaptation
process representing the phosphorylation of CheB by CheAp. The reaction between
E and A can be identified as the regulation of CheA activity by CheBp through
demethylation.

Denote the concentrations of E and A by y1 and y2. Using mass action kinetics,
one has

dy1

dt
= k0 + ksS−µey1y2,

dy2

dt
= k0 + ksS−µay2.

(14)

Given a step signal change, y1 changes rapidly and adapts slowly to its pre-stimulus
level (Fig. 4B). In this model, yp can be identified as −y1.
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Fig. 4 The coarse-grained model. (A) The wiring diagram. (B) Solution of the model given step
changes of the signal from 0 to 1 at t = 10 and from 1 to 0 at t = 50. Parameters used are non-
dimensional: k0 = 1, ks = 1, µa = 0.2, µe = 2. Reproduced from [38] with permission.
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3.2.3 A detailed model for E. coli chemotaxis

A comprehensive model for E. coli intracellular signaling was introduced to study
cell population dynamics in [38]. The model is based on the full signaling network
in Fig. 1 and a simplified version of trimers-of-dimers model proposed in [11] using
quasi-steady state approximations of fast reactions and mean field approximations
of the methylation level of the receptors.

Denote the mean methylation level of the chemoreceptors by m and the external
signal concentration by S. The equation of m is governed by the methylation and
demethylation reactions mediated by CheR (R) and CheBp (Bp),

dm
dt

= kRR
(

1−A(m,S)
)
− kBpBpA(m,S). (15)

Here A(m,S) is the mean receptor activity

A(m,S) =
1

1+ exp [Nr f (m,S)]
, (16)

with
f (m,S) = α(m0−m)+ log(1+S/Ki)− log(1+S/Ka). (17)

CheR concentration R is given by

R =
Rt

1+KRTt(1−A(m,S))
. (18)

CheBp concentration Bp is implicitly given by a system of algebraic equations of Bp,
Yp (concentration of CheYp) and Tp (concentration of CheAp-associated receptors)
obtained by assuming quasi-steady states of these proteins,

kA

(
TtA(m,S)−Tp

)
− kYY Tp− kBBTp = 0,

kYY Tp−µYYp− kZZYp = 0, (19)
kBBTp−µBBp = 0,

where

Y =
Yt − (1+KZZ)Yp

1+KY Tp
,

Z =
z

1+KZYp
,

B =
Bt − (1+KBpTtA(m))Bp

1+KBTp
.

(20)

In this model yp is simply given by the CheYp concentration Yp. The function
A(m,S) and the solution subject to a step signal change is plotted in Fig. 5. A sample
code of this model can be obtained online at [39].
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Fig. 5 The detailed model for E. coli chemotaxis. A: the function A(m,S). B and C: solution of Yp
and m given step changes of the signal from 0 to 1 µM at t = 10 s and from 1 µM to 0 at t = 50 s.
Parameter used: m0 = 1, α = 1.7, Ki = 18, Ka = 3, Nr = 6, Yt = 18µM, Bt = 2µM, Rt = 0.3µM,
Zt = 1.1µM, Tt = 5/3µM, kR = 3.82×10−2s−1, kBp = 3.25s−1, kA = 100s−1, kY = 130µM−1s−1,
kB = 7.5µM−1s−1, kZ = 8.45µM−1s−1, µY = 0.1s−1, µB = 1s−1, KZ = 1µM−1, KY = 0.65µM−1,
KBp = 6.5µM−1, KB = 0.25µM−1, KR = 0.15µM−1. Reproduced from [38] with permission.

4 From individual-based models to PDE models

PDE models have been used extensively to describe chemotactic movement of cell
populations in biological and biomedical applications [40, 41, 42, 43, 44, 45]. A fun-
damental challenge faced by modelers is to determine under what conditions these
models provide a good approximation to the underlying biological process and how
to accurately estimate the parameters in the PDEs. To address this problem, mathe-
matical analysis must be developed to elucidate the connections of PDE models and
individual-based models.

Significant progress has been made along this line in the context of bacterial
chemotaxis, the simplest form of chemotaxis among all cell types. Macroscopic
PDEs have been derived from the individual-based models described in Sec. 3.

4.1 The Patlak-Keller-Segel equation for chemotaxis in small
signal gradients

When the cell density is low, the most popular PDE approach for chemotaxis is to
use the classical Patlak-Keller-Segel (PKS) equation (or a variation of it) to describe
the evolution of the cell density

∂n
∂ t

= ∇ ·
(

Dn∇n−χn∇S
)
, (21)

where n = n(x, t) is the cell density, S = S(x, t) is the signal concentration, Dn is the
effective diffusion coefficient, and χ = χ(S,∇S,n, . . .) is the chemotactic sensitivity.
Similar equations have also been used to describe cell movement towards other
signals, e.g., mechanical signals, light and heat.
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Eqn (21) has been formally derived for bacterial chemotaxis. The underlying
assumption is that the external signal S(x, t) changes slow enough along cell tra-
jectories such that intracellular signaling is close to equilibrium. A primitive form
of this condition was first introduced in [36, 37] as the “shallow gradient assump-
tion” and later elaborated in [38] as the “small signal variation assumption”. This
assumption leads to time scale separation of intracellular signaling and external sig-
nal variation, which justifies the application of perturbation method with the small
parameter being the ratio of different time scales.

The derivation in early works [46, 47, 48, 49] does not incorporate intracellular
signaling explicitly; instead, the turning rates of the velocity jump processes depend
directly on the external signal. Built upon these methods, the derivation in more
recent works incorporated intracellular signaling by ODE systems described in Sec
3.2 [36, 37, 50, 38].

4.1.1 Derivation with intracellular dynamics given by the cartoon model (13)

In [36, 37], Eqn. (21) was derived from the individual-based model with the linear
cartoon model (13) for intracellular signaling and the linear turning rate

λ = λ0−a1y1

for cell movement. The key ideas of the derivation is presented below.
Consider cell movement in 1D and assume that the external signal does not

change over time, i.e., S = S(x). Let z = y2−S and pass y1 to its quasi-steady state,
then

dz
dt

=− z
ta
∓ s0Sx,

λ = λ0 +a1z,
(22)

where minus should be used for right-moving cells and plus should be used for
left-moving cells.

Let p± = p±(x,z, t) be the density of cells at position x with internal state z and
velocity ±s0 at time t. Assume that cells are unbiased in choosing new directions of
movement after tumbling, then one has

∂ p+

∂ t
+ s0

∂ p+

∂x
+

∂

∂ z

[(
− z

ta
− s0Sx(x)

)
p+
]
=

1
2
(λ0 +a1z)

(
−p++ p−

)
,

∂ p−

∂ t
− s0

∂ p−

∂x
+

∂

∂ z

[(
− z

ta
+ s0Sx(x)

)
p−
]
=

1
2
(λ0 +a1z)

(
p+− p−

)
.

(23)

The macroscopic cell density is given by

n(x, t) =
∫
R
(p++ p−)dz.
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To obtain approximating equations for n(x, t), one needs to integrate the system (23)
over the internal variable z. Denote

j(x, t) =
∫
R

s0(p+− p−)dz,

nk(x, t) =
∫
R

zk(p++ p−)dz,

jk(x, t) =
∫
R

zks0(p+− p−)dz, k ≥ 1,

where n(x, t) and j(x, t) are the macroscopic cell density and flux.
Taking the sum and difference of the two components of (23) and integrating

over z, one obtains
∂n
∂ t

+
∂ j
∂x

= 0,

∂ j
∂ t

+ s2
0

∂n
∂x

=−λ0 j−a1 j1,
(24)

Multiplying (23) by z and then performing the same calculations, one obtains

∂n1

∂ t
+

∂ j1
∂x

=−Sx(x) j− 1
ta

n1,

∂ j1
∂ t

+ s2
0

∂n1

∂x
=−s2

0Sx(x)n−
(

λ0 +
1
ta

)
j1−a1 j2,

(25)

The moment-flux system (24) and (25) is not closed because the 2nd-order mo-
ment j2 in (25) is unknown. To obtain a closed moment-flux system, j2 must be
estimated as a function of lower-order moments. If we approximate y2 by its quasi-
steady state in Eqn (13), then z = y2− S(x) ≈ 0, leading to the moment closure
assumption

j2 =
∫
R

z2s0(p+− p−)dz≈ 0. (26)

This estimation is justified if the external signal changes slowly along the cell tra-
jectory, in which case the internal states of the cells are only slightly perturbed away
from equilibrium. The closed moment-flux system (24) - (26) represents a macro-
scopic model for the bacterial population dynamics.

Using the diffusion space and time scale, the system (24)-(26) can be rewritten
as

ε
2 ∂n

∂ t
+ ε

∂ j
∂x

= 0,

ε
2 ∂ j

∂ t
+ εs2

0
∂n
∂x

=−λ0 j−a1 j1,

ε
2 ∂n1

∂ t
+ ε

∂ j1
∂x

=−εSx(x) j− 1
ta

n1,

ε
2 ∂ j1

∂ t
+ εs2

0
∂n1

∂x
=−εs2

0Sx(x)n−
(

λ0 +
1
ta

)
j1,

(27)
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Here the small parameter ε can be regarded as the ratio of the time scale for in-
tracellular adaptation ta and the time scale for detected external signal variation
Ts = a1s0Sx/λ0.

Using the Hilbert expansion u(x, t)=∑
∞
j=0 ε ju j(x, t) for each variable and match-

ing terms with the same order of ε , the 1D form of Eqn. (21) was derived from (27)
for n0(x, t) = n(x, t)+O(ε):

∂tn0 = ∂x

(
Dn∂xn0−χn0

∂xS
)
, (28)

where

Dn = s2
0/λ0, χ =

a1s2
0ta

λ0(1+λ0ta)
. (29)

Alternative moment closure methods were also suggested in [36] based on quasi-
steady state approximations of z. Replacing one or both z in the definition of j2 by
its quasi-steady state zqss =∓s0Sx(x)ta, “-” for right-moving cells (p+) and “+” for
left-moving cells (p−), one obtains

j2 ≈−s2
0Sx(x)tan1, (30)

or
j2 ≈ s2

0Sx(x)2t2
a j. (31)

Under these closure assumptions, the system (24), (25) reduces to the same PKS
equation.

In [50], a new method was developed to accommodate a nonlinear turning fre-
quency given by the expansion

λ (z) = λ0 +
∞

∑
i=1

aizi. (32)

The derivation did not involve any moment closure step, but instead employed reg-
ular perturbation to the infinite moment system for n, j, nk and jk with k ≥ 1 on
the diffusion space and time scale. Perturbation of an infinite moment system in-
volves the inversion of an infinite matrix operator that is not feasible in general. In
this case, a special technique was developed utilizing the structure of the equations.
With these extensions, the resulting PKS model has the following parameters

Dn =
s2

0
Nλ0

, χ =
a1s2

0ta
Nλ0(1+λ0ta)

, (33)

where N = 3 is the space dimension.
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4.1.2 Derivation with the general ODE model (11) for cell signaling

In [38], mathematical analysis was developed to derive the PKS equation from
individual-based models with cell signaling given by the general ODE system (11).

Given the base model for cell movement, Equation (21) was derived with the
following formula for Dn and χ

Dn =
s2

0
Nλ0(1−ψd)

,

χ =
s2

0
Nλ0

[
(∇yλ )|y=ȳ(S) ·

(
λ0(1−ψd)Iq−

(
∇yf
)
|y=ȳ(S)

)−1 dȳ(S)
dS

]
.

(34)

Here N is the space dimension, λ = λ (yp(y)), λ0 = λ (ȳ), ȳ(S) is the adapted state
satisfying f(ȳ,S) = 0, Iq is the q×q identity matrix, q is the dimension of the internal
variable, and ψd is the index of directional persistence given by

ψd =
(

v′ ·
∫

V
T (v,v′)vdv

)/
s2

0. (35)

The derivation was based on a small signal variation assumption, which essen-
tially assumes ta� Ts, where ta is the adaptation time scale intrinsically determined
by the intracellular signaling network, and Ts is the time scale for the external sig-
nal variation interpreted by a cell. For the general ODE model, ta and Ts can be
approximated as

ta ∼ 1
/

min
0≤S≤Smax

∣∣∣σm

((
∇yf
)
|y=ȳ(S)

)∣∣∣, (36)

Ts ∼ 1
/

max
0≤S≤Smax

v∈V

λ
−1
0

∥∥∥∇yλ |y=ȳ(S)

∥∥∥ ·∥∥∥∥dȳ(S)
dS

Ṡ
∥∥∥∥ , (37)

where σm takes the maximum real part of the eigenvalues of a matrix.
The formula (34) provides a means to embed the detailed biochemistry of in-

tracellular signaling into macroscopic PDEs for the population. It is the first set
of general formulas that represent the quantities Dn and χ in terms of the struc-
ture and kinetics of the intracellular signaling network. When applied to the cartoon
model (13), it reduces to the same formula as in previous works. When applied to
the coarse-grained model (14), it leads to a logarithmic chemotactic sensitivity that
depends on the signal S

χ =
χ0

S+α0
. (38)

In other words, the macroscopic drift of the population is proportional to the gradient
of the logarithm of the signal

us ≡ χ∇S = ∇ log(S+α0). (39)
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The logarithmic sensing mechanism was observed experimentally in [51]. These
analyses suggest that the origin of the logarithmic sensing mechanism is the struc-
ture of the intracellular network [38].

When applied to the detailed model (15)-(20), the general formula predicted a
logarithmic sensitivity with χ0 = 9.50×10−2mm/s and α0 = 17.67µM, comparable
with experimental measurements. Due to the complicated form of the intracellular
dynamics, the formula (34) was evaluated numerically with the derivatives approx-
imated using a fourth-order accurate scheme and then fitted using the function (38)
(Fig 6).
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Fig. 6 Logarithmic sensitivity of E. coli predicted by the individual-based model with (15)-(20).
The blue crosses are calculated using numerical approximations of the formula (34). The red line
is the best fitting to the function (38). Parameters used: χ0 = 9.50×10−2mm/s, α0 = 17.67µM.

4.1.3 Limitations of PKS models

The PKS equation (21) provides an accurate approximation of the individual-based
model when the external signal changes slowly along cell trajectories, but breaks
down when the external signal changes fast, regardless of the form of the intra-
cellular dynamics. This was shown by extensive numerical comparisons of the cell
density dynamics predicted by the PKS equation and the corresponding individual-
based model using different kinds of signal functions [38, 52]. PDE models derived
in [53] have similar limitations as the PKS model.

Consider cell movement in a domain x∈ [0,8] mm with a static exponential ramp
signal

S =

{
ea(x−1) 0≤ x≤ 4,

e3a 4 < x≤ 8.
(40)
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Assume that initially cells form an aggregate in the region x ∈ [1,2], and set the
initial cell distribution to be

n(x,0) =
3π

4

∣∣sin(πx)
∣∣3χ1<x<2 , (41)

where χ1<x<2 is the characteristic function. Let

λ = λ0 + tanh
(

b(Yp(m)− Ȳp)
)
, T (v,v′) =

1
|V |

, V = s0∂B1
0. (42)

where λ0 = 1s−1, b = 5s−1µM−1 and s0 = 20µm/s.
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Fig. 7 Comparison of the PKS equation with the underlying individual-based model for bacterial
chemotaxis in small signal gradient with a = 0.2mm−1 (A) and large signal gradient with a =
0.5mm−1 (B). Bars: stochastic simulations of the individual-based model with (15)-(20). Curves:
solutions of the corresponding PKS model.

Fig. 7 plots the cell density dynamics predicted by the individual-based model
with (15)-(20) and the corresponding PKS model. If the signal gradient is small
(a = 0.2mm−1), the two approaches match tightly (Fig. 7A); but if the signal gra-
dient becomes large (a = 0.5mm−1), the two approaches deviate significantly (Fig.
7B). The latter situation often occurs in self-organized population dynamics [54]. A
key feature when the PKS approximation breaks down is the fat distribution of the
intracellular states as shown in Fig. 8.
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Fig. 8 Statistics of intracellular CheYp given small signal gradient with a = 0.2mm−1 (A) and
large signal gradient with a = 0.5mm−1 (B). Left: mean and standard deviation of yp over the
whole population as a function of time. Right: distribution of yp at t = 4 min.

4.2 Moment-flux models for chemotaxis in large signal gradients

When cells are exposed to large signal gradient, their intracellular state can be far
from steady state and broadly distributed. Macroscopic PDE models for such situa-
tions must include information on the distribution of the intracellular states in order
to accurately describe the population dynamics.

In [52], a hierarchy of moment-flux models that are suitable for bacterial chemo-
taxis in large gradient were derived from the individual-based model with the car-
toon intracellular dynamics (13) and nonlinear turning rate (32). The models consist
of a system of hyperbolic equations for n, j and several internal-state moments nk
and jk with k ≤ K. The moments nk and jk enclose the distribution of the internal
state and its deviation from equilibrium.

Consider the example with cell signaling described by the simplified cartoon
model (22) and cell movement subject to a time-independent signal. Multiplying
(23) by 1 and zk/k for all k≥ 1, integrating over z, and taking the sum and difference
of the two components, we obtain (24) and the following moment equations

1
k

∂nk

∂ t
+

1
k

∂ jk
∂x

=

[
−Sx jk−1−

1
ta

nk

]
, k ≥ 1

1
k

∂ jk
∂ t

+
s2

0
k

∂nk

∂x
=

[
−s2

0Sx(x)nk−1−
1
ta

jk

]
− 1

k
(λ0 jk +a1 jk+1) , k ≥ 1.

(43)
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The system for k = 1 is identical to (25).
The k-th order moment equations (43) have the factor 1/k in all terms except

the terms in the square brackets, which suggests that high-order moments in z equi-
librate relatively fast. The moment closure method in [52] is to pick an integer K
large enough such that 1/(K +1)� 1 and set

−Sx(x) jk−1−
1
ta

nk = 0 ∀k > K,

− s2
0Sx(x)nk−1−

1
ta

jk = 0 ∀k > K.

(44)

This assumption is equivalent to setting

jK+1 =−s2
0Sx(x)tanK . (45)

With this approximation, the infinite system (24) and (43) reduces to a closed mo-
ment system of moment equations for (n, j,n1, j1, · · · ,nK , jK)T .

Numerical simulations showed that as K increases, the moment-flux models be-
come more accurate in approximating the population dynamics governed by the
individual-based model (Fig. 9). The models with K = 3 and 4 show a tight match
to the individual-based model, while the PKS equation and the moment-flux mod-
els with K = 1 deviate from the individual-based model significantly. Note that the
moment closure (45) with K = 1 reduces to the moment closure (30) which was
used for the case with small signal gradient. Because the number of equations of
the model (2K +2) increases with K, it is desirable to use K as small as possible to
reduce computational cost.
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Fig. 9 Comparison of the moment-flux model, the PKS model and the underlying individual-
based model with (22). The signal is given by S(x) = µL/2− µ|x− L/2| with L = 5 mm and
µ = 4.5, which does not satisfy the small signal variation assumption. The gray bar plot is a single
realization of the individual-based model with 104 cells. The blue, red, green and black curves are
the numerical solutions of the moment-flux models with order K = 1,2,3,4. The cyan curve is the
solution of the PKS model.



20 Chuan Xue

4.3 Open problems

There are several open problems raised by previous multiscale analysis. The moment-
flux models in [52] were derived using the linear cartoon model for intracellular
signaling. The method needs to be extended to include intrinsic nonlinearities of
the intracellular dynamics, e.g., as in (14) or (15)-(20). For cases in which the sig-
nal gradient only becomes large in part of the domain, hybrid methods that bridge
individual-based models and PDE models can be developed. This is desirable es-
pecially in 3D, in which case simulations of the hyperbolic moment-flux models
become very time-consuming.

5 Summary

This chapter summarizes the multiscale modeling framework used for bacterial
chemotaxis and the major breakthroughs in deriving PDE models from individual-
based models in this context. Analyses and simulations revealed that the PKS equa-
tion is accurate in approximating the population dynamics when cell movement is
subject to small signal gradients, but it breaks down if the signal gradient becomes
large. For the former case, detailed formulas were derived for the macroscopic pa-
rameters in the PKS equation in terms of measurable parameters that describe single
cell signaling and movement. For the latter case, a hallmark is the broad distribu-
tion of the intracellular state over the whole population and alternative moment-flux
PDE models could be used instead. This review is not to reiterate all relevant results
in the literature, but written with enough detail so that it can be easily understood
by researchers and graduate students with a diverse background. The hope is that
the modeling methods developed for bacterial chemotaxis can be used or extended
to address other multiscale problems in biology.
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