Generalizations of the Grunwald-Wang Theorem and Applications to Ramsey Theory

Student Number Theory Seminar at the Ohio State University

Based on https://arxiv.org/abs/2105.02190

Sohail Farhangi

(joint work with Richard Magner)

March 28, 2022

Sohail Farhangi

Grunwald-Wang and Ramsey Theory

Theorem

Let $n \in \mathbb{N}$ be arbitrary and suppose that $x \in \mathbb{Z}$ is such that x is an nth power modulo p for every prime p. x is either an nth power or 8|n and $x = 2^{\frac{n}{2}}y^n = 16^{\frac{n}{8}}y^n$.

W. Grunwald in 1933 proved an incorrect version of this theorem since he failed to find the exceptional case when 8|n.

G. Whaples in 1942 gave another incorrect proof of Grunwald's Theorem.

S. Wang in 1948 found the counter example of 16 and gave a proof of the corrected theorem in his doctoral thesis.

It is clear that $16 = 2^4$ is not an 8th power in \mathbb{N} . To see that 16 is an 8th power modulo p for every prime p, we observe that

$$x^{8}-16 = (x^{4}-4)(x^{4}+4) = (x^{2}-2)(x^{2}+2)(x^{2}-2x+2)(x^{2}+2x+2).$$

We note that the discriminant of the last 2 factors is -4. Since one of 2, -2, and -4 will be a square modulo p, we see that $x^8 - 16$ will have a root modulo p.

The Grunwald-Wang Theorem intuitively says that 16 is the only obstruction to a certain local-global principle.

Theorem (F., Magner)

Let $n \in \mathbb{N}$ be arbitrary and suppose that $a, b, c \in \mathbb{Z}$ are such that at least one of a, b, and c is an nth power modulo p for every prime p. Then either

• n is odd and one of a, b, and c is an nth power.

2 *n* is even, none of a, b, and c are $\frac{n}{2}$ th powers, and if 4|n then each of a, b, and c is an $\frac{n}{4}$ th power.

In our arxiv paper we also address the situation for a general number field K with ring of integers \mathcal{O}_{K} .

It is clear that we still have an exceptional case if 8|n and one of a, b, and c is of the form $2^{\frac{n}{2}}y^{n}$.

A new exceptional case is found with n = 4, $a = 3^4 \cdot 4^2 \cdot 5^2$, $b = 3^2 \cdot 4^4 \cdot 5^2$, and $c = a + b = 3^2 \cdot 4^2 \cdot 5^4$.

There are more exceptional cases that actually show up from the 2 variable situation.

Theorem

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$ be such that either

- 4 \nmid n and neither of a and b are nth powers.
- **2** 4|n and neither of a and b are $\frac{n}{2}$ th powers.

Then there exist infinitely many primes p modulo which neither of a and b are an nth power.

Since 3 is a perfect square mod p if $p \equiv 1 \pmod{3}$ and every integer is a perfect cube mod p if $p \equiv 2 \pmod{3}$, we see that for any $b \in \mathbb{Z}$ one of 3^6 and b^4 will be a 12th power modulo p for any prime p.(Due to Hyde, Lee, and Spearman)

We can break down the Grunwald-Wang exceptional case of 16 by observing that $x^8 - 16 = (x^4 + 4)(x^4 - 4)$, so one of 4 or -4 will be a 4th power modulo p for any prime p.

36 is a 4th power modulo p if $p \not\equiv 13 \pmod{24}$ and 9 is a 4th power modulo p if $p \equiv 13 \pmod{24}$, so one of 36 and 9 will be a 4th power modulo p for any prime p.

If $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ is an *m*th power with m|n maximal, then the Chebotarev Density Theorem tells us that the set S_x of prime ideals \mathfrak{p} in a suitable extension of \mathbb{Z} for which x is not an *n*th power has density $\frac{m}{n}$.

If *n* is odd and none of *a*, *b*, and *c* are *n*th powers, then they are at best $\frac{n}{3}$ th powers, so $d(S_a), d(S_b), d(S_c) \le \frac{1}{3}$. If $d(S_a) = d(S_b) = d(S_c) = \frac{1}{3}$, then we use inclusion exclusion, and in either case we find a positive density of prime ideals for which none of *a*, *b*, and *c* are *n*th powers.

If *n* is even then there are more cases (such as $\frac{1}{6} + \frac{1}{3} + \frac{1}{2} = 1$) and more inclusion-exclusion.

Definition

If $p \in \mathbb{Z}[x_1, \cdots, x_n]$ is a polynomial and S is either \mathbb{N} or \mathbb{Z} , then the equation

$$p(x_1,\cdots,x_n)=0 \tag{1}$$

is **partition regular (p.r) over** S if for any partition $S = \bigsqcup_{i=1}^{r} C_i$ there exists $1 \le i_0 \le r$ and $x_1, \cdots, x_n \in C_{i_0}$ satisfying (1).

Polynomial Equations and Partition Regularity

- x + y = z is p.r. over \mathbb{N} (Schur)
- 2 xy = z is p.r. over \mathbb{N} (corollary of Schur)
- ax + by = dz is p.r. over N if and only if d ∈ {a, b, a + b} (special case of Rado's Theorem)
- x + y = wz is p.r. over \mathbb{N} (Bergelson-Hindman)
- **5** x y = q(z) with $q \in x\mathbb{Z}[x]$ is p.r. over \mathbb{N} (Bergelson)
- x + y = z² is not non-trivially p.r. over N (Csikvári, Gyarmati and Sárkozy)
- It is open as to whether $x^2 + y^2 = z^2$ is p.r. over \mathbb{N} .
- **(3)** It is open as to whether z = xy + x is p.r. over \mathbb{N} .
- $z = x^y$ is p.r. over \mathbb{N} bu $z = x^{y+1}$ remains open (Sahasrabudhe).

Our Main Result

Theorem

Our Main Result (Continued)

Theorem

3 Suppose that

$$ax + by = cwz^n$$
 (4)

If
$$\gamma^n \in \{\frac{a}{c}, \frac{b}{c}, \frac{a+b}{c}\}$$
 for some $\gamma \in \mathbb{Q}$, then

$$ax + by = cwz^n$$
 is p.r. iff $a\gamma x + b\gamma y = c\gamma w(\gamma z)^n$ is p.r. (5)

$$\Leftrightarrow ax + by = dwz^n \text{ is p.r. for some } d \in \{a, b, a + b\}$$
(6)

 $\Leftarrow ax + by = dw \text{ is p.r. for some } d \in \{a, b, a + b\}.$ (7)

For a prime p we may construct the partition $\mathbb{N} = \bigsqcup_{i=1}^{p-1} C_i$, where C_i is the set of all integers whose first non-zero digit in its base p expansion is *i*. If p is a prime for which none of ac^{-1} , bc^{-1} , or $(a+b)c^{-1}$ are *n*th powers modulo p, then this partition contains no solutions to

$$ax + by = cwz^n. \tag{8}$$

It now suffices to apply our generalization of the Grunwald-Wang Theorem. We obtain similar results for rings of integers \mathcal{O}_K of number fields K, and some of these results also have analogues over a general integral domain R.