Generalizations of the Grunwald-Wang

Theorem and Applications to Ramsey Theory

Student Number Theory Seminar at the Ohio State University

Based on https://arxiv.org/abs/2105.02190

Sohail Farhangi
(joint work with Richard Magner)
March 28, 2022

The Grunwald-Wang Theorem

Theorem

Let $n \in \mathbb{N}$ be arbitrary and suppose that $x \in \mathbb{Z}$ is such that x is an nth power modulo p for every prime $p . x$ is either an nth power or $8 \mid n$ and $x=2^{\frac{n}{2}} y^{n}=16^{\frac{n}{8}} y^{n}$.
W. Grunwald in 1933 proved an incorrect version of this theorem since he failed to find the exceptional case when $8 \mid n$.
G. Whaples in 1942 gave another incorrect proof of Grunwald's Theorem.
S. Wang in 1948 found the counter example of 16 and gave a proof of the corrected theorem in his doctoral thesis.

The Exceptional case of $x=16$

It is clear that $16=2^{4}$ is not an 8th power in \mathbb{N}. To see that 16 is an 8th power modulo p for every prime p, we observe that
$x^{8}-16=\left(x^{4}-4\right)\left(x^{4}+4\right)=\left(x^{2}-2\right)\left(x^{2}+2\right)\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right)$.
We note that the discriminant of the last 2 factors is -4 . Since one of $2,-2$, and -4 will be a square modulo p, we see that $x^{8}-16$ will have a root modulo p.

The Grunwald-Wang Theorem intuitively says that 16 is the only obstruction to a certain local-global principle.

Grunwald-Wang for 3 Variables

Theorem (F., Magner)

Let $n \in \mathbb{N}$ be arbitrary and suppose that $a, b, c \in \mathbb{Z}$ are such that at least one of a, b, and c is an nth power modulo p for every prime p.Then either
(1) n is odd and one of a, b, and c is an nth power.
(2) n is even, none of a, b, and c are $\frac{n}{2}$ th powers, and if $4 \mid n$ then each of a, b, and c is an $\frac{n}{4}$ th power.

In our arxiv paper we also address the situation for a general number field K with ring of integers \mathcal{O}_{K}.

Some Exceptional Cases

It is clear that we still have an exceptional case if $8 \mid n$ and one of a, b, and c is of the form $2^{\frac{n}{2}} y^{n}$.

A new exceptional case is found with $n=4, a=3^{4} \cdot 4^{2} \cdot 5^{2}$, $b=3^{2} \cdot 4^{4} \cdot 5^{2}$, and $c=a+b=3^{2} \cdot 4^{2} \cdot 5^{4}$.

There are more exceptional cases that actually show up from the 2 variable situation.

Grunwald-Wang for 2 Variables

Theorem

Let $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$ be such that either
(1) $4 \nmid n$ and neither of a and b are nth powers.
(2) $4 \mid n$ and neither of a and b are $\frac{n}{2}$ th powers.

Then there exist infinitely many primes p modulo which neither of a and b are an nth power.

Some More Exceptional Cases

Since 3 is a perfect square $\bmod p$ if $p \equiv 1(\bmod 3)$ and every integer is a perfect cube $\bmod p$ if $p \equiv 2(\bmod 3)$, we see that for any $b \in \mathbb{Z}$ one of 3^{6} and b^{4} will be a 12th power modulo p for any prime p.(Due to Hyde, Lee, and Spearman)

We can break down the Grunwald-Wang exceptional case of 16 by observing that $x^{8}-16=\left(x^{4}+4\right)\left(x^{4}-4\right)$, so one of 4 or -4 will be a 4th power modulo p for any prime p.

36 is a 4 th power modulo p if $p \not \equiv 13(\bmod 24)$ and 9 is a 4 th power modulo p if $p \equiv 13(\bmod 24)$, so one of 36 and 9 will be a 4th power modulo p for any prime p.

Proof Sketch

If $n \in \mathbb{N}$ and $x \in \mathbb{Z}$ is an m th power with $m \mid n$ maximal, then the Chebotarev Density Theorem tells us that the set S_{x} of prime ideals \mathfrak{p} in a suitable extension of \mathbb{Z} for which x is not an nth power has density $\frac{m}{n}$.

If n is odd and none of a, b, and c are nth powers, then they are at best $\frac{n}{3}$ th powers, so $d\left(S_{a}\right), d\left(S_{b}\right), d\left(S_{c}\right) \leq \frac{1}{3}$. If $d\left(S_{a}\right)=d\left(S_{b}\right)=d\left(S_{c}\right)=\frac{1}{3}$, then we use inclusion exclusion, and in either case we find a positive density of prime ideals for which none of a, b, and c are nth powers.

If n is even then there are more cases (such as $\frac{1}{6}+\frac{1}{3}+\frac{1}{2}=1$) and more inclusion-exclusion.

Ramsey Theory Preliminaries

Definition

If $p \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial and S is either \mathbb{N} or \mathbb{Z}, then the equation

$$
\begin{equation*}
p\left(x_{1}, \cdots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

is partition regular (p.r) over S if for any partition $S=\sqcup_{i=1}^{r} C_{i}$ there exists $1 \leq i_{0} \leq r$ and $x_{1}, \cdots, x_{n} \in C_{i_{0}}$ satisfying (1).

Polynomial Equations and Partition Regularity

(1) $x+y=z$ is p.r. over \mathbb{N} (Schur)
(2) $x y=z$ is p.r. over \mathbb{N} (corollary of Schur)
(3) $a x+b y=d z$ is p.r. over \mathbb{N} if and only if $d \in\{a, b, a+b\}$ (special case of Rado's Theorem)
(4) $x+y=w z$ is p.r. over \mathbb{N} (Bergelson-Hindman)
(5) $x-y=q(z)$ with $q \in x \mathbb{Z}[x]$ is p.r. over \mathbb{N} (Bergelson)
(6) $x+y=z^{2}$ is not non-trivially p.r. over \mathbb{N} (Csikvári, Gyarmati and Sárkozy)
(7) It is open as to whether $x^{2}+y^{2}=z^{2}$ is p.r. over \mathbb{N}.
(8) It is open as to whether $z=x y+x$ is p.r. over \mathbb{N}.
(0) $z=x^{y}$ is p.r. over \mathbb{N} bu $z=x^{y+1}$ remains open (Sahasrabudhe).

Our Main Result

Theorem

Let $m, n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z} \backslash\{0\}$.
(1) If $m, n \geq 2$, then the equation

$$
\begin{equation*}
a x+b y=c w^{m} z^{n} \tag{2}
\end{equation*}
$$

is p.r. over \mathbb{Z} if and only if $a+b=0$.
(2) If one of $\frac{a}{c}, \frac{b}{c}$, or $\frac{a+b}{c}$ is a nth power in \mathbb{Q}, then the equation

$$
\begin{equation*}
a x+b y=c w z^{n} \tag{3}
\end{equation*}
$$

is p.r. over \mathbb{Z}. If \mathbb{Q} is replaced with \mathbb{Q}^{+}then \mathbb{Z} can be replaced with \mathbb{N}.

Our Main Result (Continued)

Theorem

3 Suppose that

$$
\begin{equation*}
a x+b y=c w z^{n} \tag{4}
\end{equation*}
$$

is p.r. over $\mathbb{Q} \backslash\{0\}$.
(ㄹ) If n is odd then one of $\frac{a}{c}, \frac{b}{c}$, or $\frac{a+b}{c}$ is an nth power in \mathbb{Q}.
(b) If $n \neq 4,8$ is even then one of $\frac{a}{c}, \frac{b}{c}$, or $\frac{a+b}{c}$ is a $\frac{n}{2}$ th power in \mathbb{Q}. We used Fermat's Last Theorem here!
(c) If n is even, then either one of $\frac{a}{c}, \frac{b}{c}$, or $\frac{a+b}{c}$ is a square in \mathbb{Q}, or $\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)\left(\frac{a+b}{c}\right)$ is a square in \mathbb{Q}.

Proof Sketch of 2

If $\gamma^{n} \in\left\{\frac{a}{c}, \frac{b}{c}, \frac{a+b}{c}\right\}$ for some $\gamma \in \mathbb{Q}$, then

$$
\begin{align*}
& a x+b y=c w z^{n} \text { is p.r. iff } a \gamma x+b \gamma y=c \gamma w(\gamma z)^{n} \text { is p.r. } \tag{5}\\
& \quad \Leftrightarrow a x+b y=d w z^{n} \text { is p.r. for some } d \in\{a, b, a+b\} \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\Leftarrow a x+b y=d w \text { is p.r. for some } d \in\{a, b, a+b\} . \tag{7}
\end{equation*}
$$

Proof Sketch of 3

For a prime p we may construct the partition $\mathbb{N}=\sqcup_{i=1}^{p-1} C_{i}$, where C_{i} is the set of all integers whose first non-zero digit in its base p expansion is i.If p is a prime for which none of $a c^{-1}, b c^{-1}$, or $(a+b) c^{-1}$ are nth powers modulo p, then this partition contains no solutions to

$$
\begin{equation*}
a x+b y=c w z^{n} . \tag{8}
\end{equation*}
$$

It now suffices to apply our generalization of the Grunwald-Wang Theorem. We obtain similar results for rings of integers \mathcal{O}_{K} of number fields K, and some of these results also have analogues over a general integral domain R.

