RTG at The Ohio State University
"Arithmetic, Combinatorics, and Topology of Algebraic Varieties"
Publications
- Zach Davis: Riemann-Roch theorems for horospherical varieties. (2025). PhD Thesis, The Ohio State University.
- Hugh Dennin: Pattern bounds for principal specializations of $\beta$-Grothendieck polynomials.> Algebraic Combinatorics 8(3) (2025), 745--763, . doi: https://doi.org/10.5802/alco.422
Back to Top
Preprints
- Kyle Binder: Tor groups of the Stanley-Reisner ring of a matroid (2024). Preprint available arXiv.
- Kyle Binder and Eric Katz: The unipotent tropical fundamental group (2024). arXiv.
- Hugh Dennin: Cauchy identities for Grothendieck polynomials and a dual RSK correspondence through pipe dreams (2025). Preprint available on arXiv
- Tyler Genao, Tristan Phillips, Fredderick Saia, Tim Santens, and John Yin: Counting points on some genus zero Shimura curves (2025).Preprint available arXiv.
- Richard Haburcak: Brill-Noether loci in genus ≤ 12 (2025). (2025). Preprint available arXiv.
- Richard Haburcak and Montserrat Teixidor i Bigas: Some reducible and irreducible Brill-Noether loci (2025). Preprint available arXiv.
- Jake Huryn, Kiran Kedlaya, Christian Klevdal, and Stefan Patrikis: Compatibility of F-isocrystals on adjoint Shimura varieties (2025). Preprint available on arXiv
-
Jake Huryn and Yifei Zhang: Transport of Zariski-density in compatible collections of G-representations. (2025). Preprint available on arXiv.
Back to Top
Back to the main website of the RTG: "Arithmetic, Combinatorics, and Topology of Algebraic Varieties".
The Ohio State University, Department of Mathematics, 231 W. 18th Avenue, Columbus, OH, 43210, USA.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s), and do not necessarily reflect the views of the National Science Foundation.