next up previous
Next: RADIATION: PHYSICAL RELATION TO Up: Full Scalar Radiation Field Previous: Source as a Sum

Multipole Radiation Field

The field is a superposition of multipole field amplitudes. The first few terms of this superposition are

$\displaystyle \psi_F(\xi,\tau,r,\theta)$ $\textstyle =$ $\displaystyle \psi_0(\xi,\tau,r)$  
  $\textstyle -$ $\displaystyle e^{i\theta} \frac{\partial}{\partial r}\psi_1(\xi,\tau,r)$  
  $\textstyle +$ $\displaystyle e^{2i\theta}\left(
\frac{\partial^2}{\partial r^2}
-\frac{1}{r}\frac{\partial}{\partial r}
\right)\psi_2(\xi,\tau,r)$  
  $\textstyle -$ $\displaystyle e^{3i\theta}\left(
\frac{\partial^3}{\partial r^3}
-\frac{3}{r}\f...
...rtial r^2}
+\frac{3}{r^2} \frac{\partial}{\partial r} \right)\psi_3(\xi,\tau,r)$  
  $\textstyle +$ $\displaystyle e^{4i\theta}\left(
\frac{\partial}{\partial r^4}
-\frac{6}{r}\fra...
...ac{15}{r^3} \frac{\partial}{\partial r} \right)\psi_4(\xi,\tau,r)~+\quad \cdots$  
  $\textstyle +$ $\displaystyle (\textrm{complex~conjugate~terms}~
\textrm{corresponding~to}~m=-1,-2,-3,\cdots)$ (52)

whose explicit form is
$\displaystyle \psi_F(\xi,\tau,r,\theta)$ $\textstyle =$ $\displaystyle \int_0^\infty \left[
\frac{2S^0_I(\tau+\sinh^{-1}u,\xi')-2S^0_{II...
...inh^{-1}u,\xi')}{\sqrt{(\xi^2-\xi'^2-r^2)^2+(2\xi\xi')^2 }}
\right]\xi'\, d\xi'$  
  $\textstyle -$ $\displaystyle e^{i\theta} \frac{\partial}{\partial r}
\left[
\frac{2S^1_I(\tau+...
...u-\sinh^{-1}u)}{\sqrt{(\xi^2-\xi'^2-r^2)^2+(2\xi\xi')^2 }}
\right]\xi' \, d\xi'$  
  $\textstyle +$ $\displaystyle e^{2i\theta}\left(
\frac{\partial^2}{\partial r^2}
-\frac{1}{r}\f...
...h^{-1}u,\xi')}{\sqrt{(\xi^2-\xi'^2-r^2)^2+(2\xi\xi')^2 }}-
\right]\xi' \, d\xi'$  
  $\textstyle +$ $\displaystyle \quad \textrm{etc.}$ (53)

where

\begin{displaymath}
u=\frac{\xi^2-\xi'^2-r^2}{2\xi\xi'}~.
\end{displaymath}

It is evident that each multipole term has its own distinguishing angular ($\theta$) and radial ($r$) dependence.


next up previous
Next: RADIATION: PHYSICAL RELATION TO Up: Full Scalar Radiation Field Previous: Source as a Sum
Ulrich Gerlach 2001-10-09