next up previous contents
Next: Canonical Transformation Up: Action Variables Previous: Action Variables   Contents

Linear Representation

1. For fixed $ \mathbf{I}=(I_u,I_v,I_x,I_y)$ these paths have the linear representation

$\displaystyle \phi^u$ $\displaystyle =\phi^u_0 +(\tau-\tau_0)\frac{\partial H(\mathbf{I})}{\partial I_u}$ (47)
$\displaystyle \phi^v$ $\displaystyle =\phi^v_0 +(\tau-\tau_0)\frac{\partial H(\mathbf{I})}{\partial I_v}$ (48)
$\displaystyle \phi^x$ $\displaystyle =\phi^x_0 +(\tau-\tau_0)\frac{\partial H(\mathbf{I})}{\partial I_x}$ (49)
$\displaystyle \phi^y$ $\displaystyle =\phi^y_0 +(\tau-\tau_0)\frac{\partial H(\mathbf{I})}{\partial I_y}$ (50)

It is related to the spacetime representation relative to the physically given coordinates $ x^\alpha=(u,v,x,y)$ by the transformation

$\displaystyle \left.\begin{array}{rl} \phi^u&=\displaystyle \frac{\partial W(u,...
...style \frac{\partial W(u,v,x,y;\mathbf{I})}{\partial I_y}~. \end{array}\right\}$ (51)

This transformation has changed a nonlinear representation into an equivalent representation which is linear.



Ulrich Gerlach 2005-11-07