next up previous contents
Next: Rotational Periodicity Up: Action Variables Previous: Linear Representation   Contents

Canonical Transformation

2. Recalling that the four-momentum of the particle is

$\displaystyle p_\alpha=\frac{\partial W(u,v,x,y;\mathbf{I})}{\partial x^\alpha} ~~~~\alpha=u,v,x,y~,$ (52)

one has the fact that these two sets of equations, (52) and (53), define implicitly the phase space transformation

$\displaystyle (u,v,x,y,;p_u,p_v,p_x,p_y)\longrightarrow (\phi^u ,\phi^v ,\phi^x ,\phi^y;
I_u,I_v,I_x,I_y)
$

Being generated from the scalar function $ W(x^\alpha;\mathbf{I})$, this transformationis canonical, i.e. it leaves invariant the representation of the antisymmetric tensor, Eq.(8):

$\displaystyle dx^\alpha\wedge dp_\alpha=d\phi^\beta\wedge dI_\beta ~.
$



Ulrich Gerlach 2005-11-07