next up previous contents
Next: Linear Representation Up: Action-Angle Representation Previous: Multiple Periodicity expressed in   Contents

Action Variables

The four periods give rise to the four action variables

$\displaystyle I_u\equiv$ $\displaystyle \int_0^{2\pi/\omega_1}p_u du$ (34)
$\displaystyle I_v\equiv$ $\displaystyle \int_0^{2\pi/\omega_2}p_v dv$ (35)
$\displaystyle I_x\equiv$ $\displaystyle \int_0^{L_x}p_x dx$ (36)
$\displaystyle I_y\equiv$ $\displaystyle \int_0^{L_y}p_y dy~.$ (37)

The evaluation of these integrals is done with the help of Eqs.(16)-(18) and (31)-(32). The result is the transformation

$\displaystyle (P_v,P_x,P_y,P_\tau)\leadsto \left\{ \begin{array}{rl} I_u=&\disp...
..._v\frac{2\pi}{\omega_2}\\ ~&~\\ I_x=& P_xL_x\\ I_y=& P_yL_y \end{array} \right.$ (38)

and its inverse

$\displaystyle (I_u,I_v,I_x,I_y)\leadsto \left\{ \begin{array}{rl} -P_\tau=&\dis...
...\frac{\omega_2}{2\pi}\\ ~&~\\ P_x=&I_x /L_x\\ P_y=&I_y /L_y \end{array} \right.$ (39)

The effect of this transformation is that it decomposes the dynamical system into its fundamental physical - and hence mathematical - components, each having its own frequency.

Indeed, introducing the action variables into the dynamical phase, Eq.(22), one finds that, with the help of Eqs.(31) and (32), its form (a.k.a. ``Hamilton's principal function'') is

$\displaystyle \overbrace{ W_0(u;\mathbf{I})+W_1(v;\mathbf{I})+W_2(x;\mathbf{I})...
...lpha,\mathbf{I})} -W(x_0^\alpha,\mathbf{I})-(\tau-\tau_0) H(\mathbf{I})}~~~~~~~$ (40)

where the four contributions to Hamilton's characteristic function

$\displaystyle W(x^\alpha;\mathbf{I})=\int_0^u p_udu+\int_0^v p_vdv+ \int_0^x p_xdx+\int_0^y p_ydy$ (41)

are

$\displaystyle W_0(u,\mathbf{I})$ $\displaystyle =u \frac{\omega_1}{2\pi}I_u$    
$\displaystyle %+v\frac{\omega_2}{2\pi}I_v +
$ $\displaystyle +\frac{1}{4I_v}\frac{2\pi}{\omega_2}\int_{0}^u 2m\, du \left\{ \f...
...x} \eta_x \sin\omega_1 u+ \frac{I_y}{L_y} \eta_y \sin(\omega_1 u+\delta)\right.$    
  $\displaystyle ~~~~~~~~~~~~~~~-\frac{\eta^2_x}{4} m\cos 2\omega_1 u \left. -\frac{\eta^2_y}{4} m\cos (2\omega_1 u+2\delta) \right\}$ (42)
$\displaystyle W_1(v,\mathbf{I})$ $\displaystyle =v\frac{\,\omega_2}{2\pi}I_v$ (43)
$\displaystyle W_2(x,\mathbf{I})$ $\displaystyle =\frac{x}{L_x}I_x$ (44)
$\displaystyle W_3(y,\mathbf{I})$ $\displaystyle =\frac{y}{L_y}I_y$ (45)

with


$\displaystyle \eta_x$ $\displaystyle \equiv \frac{qE_x}{m\omega_1}~~~\textrm{and}~~~ \eta_y\equiv \frac{qE_y}{m\omega_1}$ (46)

as the dimensionless relativistic impulse factors, which express the interaction between the laser and the charge, while

$\displaystyle H(\mathbf{I})=\displaystyle\frac{1}{2m}\left\{
\frac{I_x^2}{L_x^2...
...i}\frac{\omega_2}{2\pi}+
\frac{m^2}{2}\left( \eta_x^2+\eta_y^2\right) \right\}
$

is the conserved superhamiltonian, Eq.(40), expressed in terms of the four action variables.

The introduction of these variables into the dynamical phase, and their application to the principle of constructive interference,

$\displaystyle \frac{\partial \tilde{S'}(x;\mathbf{I};\tau)}{\partial I_\beta}=0~~~~~~\beta=u,v,x,y$    

again leads to a straightening out of the phase space trajectories, just like Eq.(23) led to Figure 8b. The only difference is that now the straight lines are tilted relative to the coordinate plane $ \tau=\tau_0$. This means that the straight lines have nonzero projections onto this plane. These projected paths are

$\displaystyle \frac{\partial W(x^\alpha;I)}{\partial I_\beta}$ $\displaystyle = \frac{\partial W(x_0^\alpha;I)}{\partial I_\beta}+(\tau-\tau_0) \frac{\partial H(I)}{\partial I_\beta}~~~~~~\beta=u,v,x,y~.$    

They lead to a number of conclusions.

Problem6: a) Point out why these four equations express the same spacetime trajectory as Eqs.(23).

b) show that their explicit form is

$\displaystyle (u-u_0)\frac{\omega_1}{2\pi}$ $\displaystyle = -(\tau-\tau_0)\frac{2}{m} \frac{\omega_1}{2\pi}\frac{\omega_2}{2\pi}I_v$    
$\displaystyle (v-v_0)\frac{\omega_2}{2\pi}$ $\displaystyle + \frac{1}{4I_v^2}\frac{2\pi}{\omega_2}\frac{2m}{\omega_1} \left[...
...L_x}I_x \cos \omega_1 u + \frac{\eta_y}{L_y}I_y \cos (\omega_1 u+\delta)\right.$    
  $\displaystyle ~~~~~~~~~~~~~~~+\left.\frac{m}{8}\left( \eta_x^2 \sin 2\omega_1 u+ \eta_y^2 \sin (2\omega_1 u+\delta)\right) \right]^u_{u_0}$    
  $\displaystyle = -(\tau-\tau_0)\frac{2}{m} \frac{\omega_1}{2\pi}\frac{\omega_2}{2\pi}I_u$    
$\displaystyle \frac{x-x_0}{L_x}$ $\displaystyle -\frac{1}{4I_v}\frac{2\pi}{\omega_2}\frac{2m}{\omega_1} \left. \f...
...\eta_x}{L_x}\cos \omega_1 u\right\vert^u_{u_0} =(\tau-\tau_0)\frac{I_x}{mL^2_x}$    
$\displaystyle \frac{y-x_0}{L_y}$ $\displaystyle -\frac{1}{4I_v}\frac{2\pi}{\omega_2}\frac{2m}{\omega_1} \left.\fr...
...}\cos (\omega_1 u+\delta) \right\vert^u_{u_0} = (\tau-\tau_0)\frac{I_y}{mL^2_y}$    



Subsections
next up previous contents
Next: Linear Representation Up: Action-Angle Representation Previous: Multiple Periodicity expressed in   Contents
Ulrich Gerlach 2005-11-07