next up previous contents
Next: The Dynamical Phase Up: Laser-driven particle mechanics Previous: Lagrangian and Hamiltonian Formulation   Contents

Advantage of the Hamiltonian Formulation.

One of the chief virtues of the Lagrangian equations of motion is that they remain invariant under an arbitrary point transformation

$\displaystyle \{x^\alpha\}\rightsquigarrow\{Q^\beta=Q^\beta(x)\}$    

Hamilton's equations of motion not only share this virtue but they take it to a higher level: they are invariant under certain more general transformations

$\displaystyle \{x^\alpha,p_\gamma\}\rightsquigarrow \{Q^\beta=Q^\beta(x,p),P_\beta=P_\beta(x,p\},$ (5)

which is to say,

$\displaystyle \frac{dQ^\beta}{d\tau}$ $\displaystyle =\frac{\partial H}{\partial P_\beta} \textrm{~~~and~~~} \frac{dP_\delta}{d\tau}=-\frac{\partial H}{\partial Q^\delta}~.$ (6)

Here $ H$ is the transformed superhamiltonian obtained from $ \mathcal{H}$ with the help of Eq.(5):

$\displaystyle H(Q,P)=\mathcal{H}\left( x(Q,P),p(Q,P)\right)~.
$

Termed canonical, such transformations have the distinguishing property that they leave invariant the representation of the antisymmetric tensor

$\displaystyle dx^\alpha\wedge dp_\alpha=dQ^\beta\wedge dP_\beta.$    

A sufficient condition for a transformation, Eq.(5), to be canonical is that there exist a scalar function of $ \{x^\alpha\}$ and $ \{P_\beta\}$,

$\displaystyle S=S(x,P).$    

Indeed, letting

$\displaystyle \frac{\partial S(x,P)}{\partial x^\alpha}\equiv~p_\alpha~~$   and$\displaystyle ~\frac{\partial S(x,P)}{\partial P_\beta}\equiv Q^\beta$ (7)

one finds that

$\displaystyle dx^\alpha\wedge dp_\alpha$ $\displaystyle = dx^\alpha\wedge\frac{\partial}{\partial x^\beta}\left(\frac{\pa...
...ial}{\partial P_\beta}\left(\frac{\partial S}{\partial x^\alpha}\right)dP_\beta$    
  $\displaystyle = dx^\alpha\wedge dx^\beta\frac{\partial^2S}{\partial x^\beta\par...
...ial}{\partial x^\alpha}\left(\frac{\partial S}{\partial P_\beta}\right)dP_\beta$    
  $\displaystyle =$   zero$\displaystyle ~+\frac{\partial}{\partial x^\alpha}\left(\frac{\partial S}{\partial P_\beta}\right)dx^\alpha\wedge dP_\beta$    
  $\displaystyle = \frac{\partial}{\partial P_\alpha}\left(\frac{\partial S}{\part...
...\alpha}\left(\frac{\partial S}{\partial P_\beta}\right)dx^\alpha\wedge dP_\beta$    
  $\displaystyle = d\left(\frac{\partial S}{\partial P_\beta}\right)\wedge dP_\beta$    
  $\displaystyle =dQ^\beta\wedge dP_\beta$ (8)

Problem 1: Prove that the representation invariance of Eq.(8) implies the local existence of a scalar $ S(x,P)$ whose gradients yield Eq.(7).

Thus the existence of a scalar $ S$ is both a necessary and a sufficient condition for the invariance expressed by Eq.(8). It also is a sufficient condition for the invariance of Hamilton's equations of motion.

Problem 2: Show that a transformation such as the one given by Eq.(7) transforms the given euations of motion, Eqs.(3)-(4), into the same form, and given by Eq.(6).

Discussion: Taking advantage of the chain rule, let

$\displaystyle \mathbf{\dot{g}}^\tau_{xp}\equiv \frac{dx^\alpha}{d\tau}
\frac{\p...
...{dP_\beta}{d\tau}
\frac{\partial}{\partial P^\beta}=\mathbf{\dot{g}}^\tau_{QP}
$

be a vector tangent to the phasespace trajectory $ \mathbf{g}^\tau$ relative to the given ( $ x^\alpha;p_\beta$) and the new ( $ Q^\alpha;P_\beta$) coordinates respectively.

a) Show that


and


$\displaystyle \langle dx^\alpha \wedge dp_\alpha \vert\mathbf{\dot{g}}^\tau_{xp}\rangle$ $\displaystyle = dp_\alpha \frac{dx^\alpha}{d\tau}-dx^\beta \frac{dp_\beta}{d\tau}\langle dQ^\alpha \wedge dP_\alpha \vert\mathbf{\dot{g}}^\tau_{QP}\rangle$ $\displaystyle = dP_\alpha \frac{dQ^\alpha}{d\tau}-dQ^\beta \frac{dP_\beta}{d\tau}$ (9)

b) Point out why

$\displaystyle \langle dx^\alpha \wedge dp_\alpha \vert\mathbf{\dot{g}}^\tau_{xp...
...e=
\langle dQ^\alpha \wedge dP_\alpha \vert\mathbf{\dot{g}}^\tau_{QP}\rangle~.
$

c) Show that

$\displaystyle \langle dx^\alpha \wedge dp_\alpha \vert\mathbf{\dot{g}}^\tau_{xp}\rangle=
d\mathcal{H}(x^\alpha,p_\beta)
$

implies Hamilton's equations of motion, Eq.(3)-(4).

d) Show that the introduction of the new coordinates $ \{Q^\alpha,P_\alpha\}$ into $ d\mathcal{H}$,

$\displaystyle d\mathcal{H}(x^\alpha(Q^\gamma,P_\delta),p_\beta(Q^\gamma,P_\delta))
\equiv
dH(Q^\gamma,P_\delta)
$

yields Eq.(6), Hamilton's equations relative to the new coordinates $ \{Q^\gamma,P_\delta\}$.


next up previous contents
Next: The Dynamical Phase Up: Laser-driven particle mechanics Previous: Lagrangian and Hamiltonian Formulation   Contents
Ulrich Gerlach 2005-11-07