Knots and Graphs

http://www.math.ohio-state.edu/~chmutov/wor-gr-su13/wor-gr.htm

Working Group [Summer 2013]
MATH 4193, class number 13323
June 10 --- July 26, 2013

Instructor: Sergei Chmutov
Office MW-712. Phone 688-3175
CoInstructor: Anh Tran
Office MW-456. Phone 292-6597

Monday, Wednesday, 2:30-3:30, MW-154             

Past year programs

       2012    2011
       2010    2009    2007    2006    2005

  • Announcement
  • List of participants
  • Research projects
  • Table of Virtual Knots by Jeremy Green
  • Our results

  • Schedule

    Week 1

     
    Mo. June 10S.Chmutov,  Introduction. Knots and their Jones polynomial.    Handout.   
    We. June 12S.Chmutov,  The Tutte polynomial.    Handout.    Wikipedia.

    Week 2

     
    Mo. June 17S. Chmutov,  Ribbon graphs and Bollobás-Riordan polynomials. Handout.
    We. June 19S.Chmutov,  Gauss diagrams.    Handout.

    Week 3

     
    Mo. June 24B.O'Connor, A.Krieger,  Signed graphs, colorings, and Tutte polynomial.
    We. June 26B.O'Connor, A.Krieger,  Signed chromatic polynomial and its categorification.

    Week 4

     
    Mo. July 1B.Burdick, N.Taylor,  Flow polynomial for simplicial complexes.
    We. July 3J.Chun, I.Smith,  Symmetric and weighted chromatic polynomial.

    Week 5

     
    Mo. July 8D.Clark, A.Funke, A.Wong,  Parity bracket for virtual knots.
    We. July 10B.O'Connor, A.Krieger,  Gain graphs, Tutte polynomial, and its categorification.

    Week 6

     
    Mo. July 15B.O'Connor, A.Krieger,  Gain graphs, Tutte polynomial, and its categorification.
    We. July 17B.Burdick, N.Taylor,  Flow polynomial for simplicial complexes.

    Week 7

     
    Mo. July 22J.Chun, I.Smith, P.Tian  Weighted chromatic polynomial and caterpillars.
    We. July 24D.Clark, A.Funke, A.Wong,  Generalization of parity bracket for virtual knots.