Math 4181H,  Honors Calculus I  Autumn 2015

Homework problems


§1:    5(ii),(iv)    (use only P1–P12, and justify each step)
§1:    5(vi)        (use 5(iv))
§1:    8 (Here the idea is to derive P10–P12 from P1–P9 and P'10–P'13; your first step should be to define the positive numbers P using only these new axioms.)

For the following problems, please provide complete proofs. However, any of the results in Chapter 1, and any of the facts in problems 3, 5, 12 (i),(ii),(iii), can be used without special mention or further proof. Also, you may assume the following fact, which we will prove later: Any positive number a has a positive square root.

§1: 7 (5(ix) and (x) are useful); §1: 12(iv), (v), (vi); 14(a)(b)
§1:  19(a)(b)(c)(d) )



Recommended problems:  (You don’t have to turn these in, but they are very useful.
        §1: 2; 3(iii); 4(iv), (xiii); 5 (i), (ix), (x); 10(ii); 11(ii), (iv), 14(c)
        §2: 1(i), 2(i)

Due: Fri Sep. 4
__________________________________________________________

Due on Fri, Sep. 11:

§2:  14(a)

§2:  20

§3: 5(ii)(iv)(vi)
(see Problem 4 for notation), 7, 9, 13 plus the following problem related to Chap. 2
                             "Consider the set ℕ2 of  pairs (m,n)  of natural numbers with the following order relation: (M,N)>(m,n) if M>m or if M=m and N>n. (For example, (2,1)>(1,100), (3,10)>(3,9); this is called the lexicographic order.)  Show that ℕ2 with this order is well ordered". This can shown in a number of ways: a carefully organized induction, or  an inductive construction of an "infinite descending sequence" with contradictory properties...

§3: 24a, 26, 27c; §4: 9, 16,18
__________________________________________________________________________

Bonus problem   Extra credit, you can submit it until Fri Sept 18. Worth a total of 100p.
______________________________________________________________________

Due on Fri, Sep. 11:     §4  (Appendix 1) 2; (Appendix 2) 1; (Appendix 3) 5
                                      §5 3 (i), (iv), (v); 7, 20, 25,26, 31, 33 (i) (iii); 34 ,39 (v) (vi)  and: Bonus points

_______________________________
Recommended problems
§7:  3 (ii), 6, 7, 8, 10, 11
§8:  6, 7, 8(a)
_____________________________________________________
Due Fri. Oct 9:

 §10: 15,25,27,28,29,31
 §10: 15,25,27,28,29,31
§11: 4,15, 28, 42, 60
 §11: 38,43,53
   Very useful but optional (not graded): §11: 34,37,54,55,58
_________________________________________________________________________

Due Monday Oct 19

§12: 5b, 8, 14,21,24
§13: 13,14,16,20,31ab, 39; 
        Very useful but optional (not graded): §12: 1 (i)-(iv), 4, 5(a), 7 (i),(ii), (iii)
_________________________________________________________________________

Due Monday Oct 26
 §14: 9,10,18,23e.      
 §15: 3ab,9ab,13,16                                                        

                                                                         Optional bonus problems The area.
                                                    
                                                                     

_____________________________________________________________________________________
Due Monday Nov 2

 §18: 7,8,12,42(a),(b),47,49
 Optional bonus problems               Defining powers from first principles.

Due Fri Nov 20

§20: 1 (i)(ii)(iii),7,8,11,13,14,23,24  
§23: 1 (i)(ii)(ix)(xviii, 8,9,11(a), 15(c),28 (a,b,c,d,e),29
  

Due Mon  Nov 29
§19: 36(a,b)
§24: 1(i,iv),2(v),11(a,b),12(a),24,25.

Due Mon  Dec 7
§26: 10
§27: 4, 9(iii)(vi)(vii), 11c,g, 16a,b


Bonus problems