next up previous contents
Next: Frequency of Rotation Up: Action Variables Previous: Canonical Transformation   Contents

Rotational Periodicity

3. Each of the four coordinates, Eq.([*]), is the angular coordinate on one of the circles which makes up the torus, Eq.(34). Furthermore, the periodicity of each is measured in units of revolutions, one per period:

$\displaystyle \left.\begin{array}{rl} \Delta\phi^u&=1\\ \Delta\phi^v&=1\\ \Delta\phi^x&=1\\ \Delta\phi^y&=1 \end{array}\right\}$ (53)

The existence and the magnitude of four periods expressed by these equations is validated by the ensuing calculation. One takes advantage of the four-fold periodicity of the spacetime environment of the particle's world line. This periodicity is characterized by the four periods

$\displaystyle \left.\begin{array}{rl} \Delta u&=\displaystyle \frac{2\pi}{\omeg...
...le \frac{2\pi}{\omega_2}\\ \Delta x&=L_x\\ \Delta y&=L_y \end{array}\right\} ~.$ (54)

The transformation, Eq.(52), maps the given spacetime periods, Eq.(55), into the periods, Eq.(54), of the torus. For example, using Eqs.(52) and (42) one has

$\displaystyle \Delta \phi^u$ $\displaystyle = \frac{\partial W(u+2\pi/\omega_1,v,x,y;\mathbf{I})}{\partial I_u} -\frac{\partial W(u,v,x,y;\mathbf{I})}{\partial I_u}$    
  $\displaystyle =\frac{\partial}{\partial I_u}\left\{ \int_u^{u+2\pi/\omega_1} p_udu+0+0+0\right\}$    
  $\displaystyle =\frac{\partial I_u}{\partial I_u}=1$    

Analogous computations validate the remaining periodicities in Eq.(54).

For fixed action $ \mathbf{I}=(I_u,I_v,I_x,I_y)$ the periodic angle coordinates $ \{ \phi^u,\phi^v,\phi^x,\phi^y,\}$ span a four-dimensional torus, Eq.(34), while a given spacetime trajectory, Eqs.(48)-(51), is represented by a straight line winding on it. The relation between these toroidal coordinates and the physically given ones is

$\displaystyle \phi^u$ $\displaystyle = (u-u_0)\frac{\omega_1}{2\pi}$    
$\displaystyle \phi^v$ $\displaystyle = (v-v_0)\frac{\omega_2}{2\pi} +\frac{1}{4I_v^2}\frac{2\pi}{\omeg...
...L_x}I_x \cos \omega_1 u + \frac{\eta_y}{L_y}I_y \cos (\omega_1 u+\delta)\right.$    
  $\displaystyle ~~~~~~~~~~~~~~~+\left.\frac{m}{8}\left( \eta_x^2 \sin 2\omega_1 u+ \eta_y^2 \sin (2\omega_1 u+\delta)\right) \right]^u_{u_0}$    
$\displaystyle \phi^x$ $\displaystyle = \frac{x-x_0}{L_x}-\frac{1}{4I_v}\frac{2\pi}{\omega_2}\frac{2m}{\omega_1} \left. \frac{\eta_x}{L_x}\cos \omega_1 u\right\vert^u_{u_0}$    
$\displaystyle \phi^y$ $\displaystyle = \frac{y-x_0}{L_y}-\frac{1}{4I_v}\frac{2\pi}{\omega_2}\frac{2m}{\omega_1} \left.\frac{\eta_y}{L_y}\cos (\omega_1 u+\delta) \right\vert^u_{u_0}~.$    

In the framework of this toroidal picture the physical coordinates are curvilinear, but the geometrical coordinates are rectilinear. Because of their geometrical simplicity, the action-angle variables are sometimes called normal coordinates.
next up previous contents
Next: Frequency of Rotation Up: Action Variables Previous: Canonical Transformation   Contents
Ulrich Gerlach 2005-11-07