Reading Classics Home Page

Reading Classics began as a VIGRE Working Group in Winter Quarter of 2003. Its aim is to read various classic mathematical texts and understand something of the history of mathematics.
2002-3: Winter, Spring
2003-4: Fall, Winter, Spring
2004-5: Fall, Winter, Spring
2005-6: Fall, Winter, Spring
2006-7: Fall, Winter, Spring
2007-8: Fall, Winter, Spring
2008-9: Fall, Winter, Spring
2009-10: Fall, Winter, Spring
2010-11: Fall, Winter, Spring
2011-12: Fall, Winter, Spring

lliptic curve

Winter, 2003:  We looked at Diophantus and the background of modern number theory and arithmetic algebraic geometry.

Some references:

  1. I. G.Bashmakova: Diophantus and Diophantine Equations, MAA 1997
  2. T.L. Heath: Diophantus of Alexandria, Dover 1964


os moi pou sto

Spring, 2003: We looked at the works of Archimedes.

Some references:

  1. S. Stein: Archimedes: What did he do besides cry Eureka? MAA 1999
  2. T.L.Heath: The Works of Archimedes, Dover 1953




Fall, 2003: We looked at the works of Euler.

Some references:


Notes on the talks (prepared by Steve Miller).



Winter, 2004: We continued with the works of Euler.

Some references:


Notes on the talks (prepared by Steve Miller).


Spring, 2004: More Euler!

Some references:




Fall, 2004: We looked at the works of Gauss.



Winter, 2005: We are looking at the works of Fermat and his contemporaries.



Spring, 2005: We are continuing with the work of contemporaries of Fermat.

scalsargueslliseteplerrd Brounckerlileoygens


Fall, 2005: Abel and Galois



Winter, 2006: More contemporaries of Newton (but not Newton himself!)



Spring, 2006: Mostly Leibniz



Fall, 2006: Euler redux




Winter, 2006:



Spring, 2007:




Fall, 2007: Newton's Principia
We worked through parts of Newton's Principia.

Talks: Fabrizio Polo, Justin Wiser, Kitzeln Siebert, Eric Swartz, Zhizhang Xie, Inger Knutson


Winter, 2008: Newton's Principia (continued)


Spring, 2008: more Newton

Talks: John McSweeney, Marc Carnovale, Sam Fotis, Craig Jackson, Kyle Joecken, Kitzeln Siebert, Jared Hirsch, Ilya Volynin


Fall, 2008: Lagrange


Winter, 2009: Lagrange and his contemporaries


Spring, 2009: The early 1800s




Fall, 2009: Euler !?

Talks: Cory Staten, Trent Ohl, Robert Bradford, Marc Carnovale, Charles Baker


Winter, 2010: Euler!




Spring, 2010: Unrestricted!




Fall, 2010: the Bernoullis




Winter, 2011: the Bernoullis




Spring, 2011: the Bernoullis




Fall, 2011: Early mathematics: 500 B.C.E.--1000 C.E.




Winter, 2012: Early mathematics: 500 B.C.E.--1000 C.E.




Spring, 2012: Early mathematics: 500 B.C.E.--1000 C.E.



ˇ       Robin Baidya: Philosophy of Mathematics and Logic in Greece and Rome

ˇ       Charles Baker: Archimedes Second Book on the sphere and the cylinder

ˇ       Daniel Moore: Babylonian Numerals

ˇ       John McSweeney: Number Systems and Calendars: the Maya and Islam



Change to Semesters


Fall, 2012: Fermat and his contemporaries



Spring, 2013: Erdos(?)

Talks: Bart Snapp, Gary Kennedy, Patrick Schnell, Andrew Krieger, Ben O’Connor, Wesley Hamilton, Boming Jia, Adam Funke, Qing Chu



Fall, 2013:  Euler


ˇ      Andrew Krieger: L’Hopital’s Rule

ˇ      John H. Johnson: Greek and Latin Squares: Euler’s Officer Problem (after E 530 and E 795)

ˇ      Wesley Hamilton: The Partition Function

ˇ      Daniel Glasscock: ?

ˇ      Boming Jia: ? Replicated Exponentials

ˇ      Duncan Clark: Evaluating Zeta(2) (after E 41)

ˇ      Mario Carneiro: Fermat’s Little Theorem

ˇ      Henry Tran: Partial Fractions (after E 794 and E 153)

ˇ      Ben O’Connor: Euler’s Constant

ˇ      David Simmons: ?



Spring, 2014:  Euler


ˇ      John H. Johnson

ˇ      Boming Jia: Geometrica et Spherica Quaedam (after E 749)

ˇ      Ben O’Connor: (Various geometric results of Euler; E 693)

ˇ      Duncan Clark: Divergent Series (after E 247)

ˇ      Andrew Krieger: The Genovese Lottery (after E 812)

ˇ      Alek Eren: Pentagonal Number Theorem (after E 158, E 244)

ˇ      Daniel Glasscock: Elliptic Integrals (after E 251)

ˇ      Gary Kennedy: (?)

ˇ      Aaron Wong: On Zeta(s)

ˇ      Christopher Antos: Fermat’s Theorem on primes of the from 4n+1 (after E 241, E 227, E 26)

ˇ      Rosanna Mersereau: Magic Squares (history and E 530)



Fall, 2014:  Open…


ˇ      Boming Jia: Two ancient methods to find the volume of a sphere (Archimedes 287-212 BCE and Tsu Chung Chih 480-525 CE)

ˇ      Wesley Hamilton: Edouard  Lucas’s Married Couple Problem

ˇ      Anthony Pardo: How many ways to divide a polygon into triangles? (after Euler and others)

ˇ      Protiva Rahman: (?)

ˇ      Duncan Clark: Polya’s Theorem on the projection of {z in C: |p(z)|≤2} onto a line (after Proofs from the Book)

ˇ      Ji Hoon Chun: (?)

ˇ      Daniel Glasscock: Euler, Herglotz, and a beautiful series for the cotangent.



Spring, 2015:  Open…


ˇ      Boming Jia: Euler, the Basel Problem, and Tannery

ˇ      Johann Miller

ˇ      Tom Dinitz

ˇ      Wesley Hamilton

ˇ      Matt Carr

ˇ      Noah Taylor

ˇ      Duncan Clark

ˇ      Anthony Pardo

ˇ      Nicholas Hemleben

ˇ      Christopher Wang: (?) The Honeycomb Tiling Conjecture

ˇ      David Simmons: Liouville’s Theorem on conformal mappings

ˇ      Daniel Brogan: Cubic curves in the triangular plane (the Darboux cubic et alia)


Fall, 2015:


Spring, 2016:  Open…


ˇ      Willa Del Negro Skeehan:

ˇ      Sam Fotis: An essay by Omar Khayyam

ˇ      Daniel Murphy: Applications of Sperner’s Lemma

ˇ      Anthony Ciavarella: Euler and the zeta function

ˇ      Max Olson: History of Magic Squares

ˇ      Caleb Dilsavor: Infinitesimals and Non-Standard Analysis

ˇ      Anthony Pardo: Is it possible to divide a square into an odd number of triangles of equal area?

ˇ      Nik Henderson: Conway’s “look and say” sequence

ˇ      Aidan Howells: On the divergences of the sum of 1/p.

ˇ      Daniel Brogan: The 27 lines on a cubic surface

ˇ      Kevin Kauzau: (?)

ˇ      Michael Crawshaw: (?)


Fall, 2016: The 1600s, sort of


ˇ      Tianye Feng: Find a triangle with rational sides and medians (after Euler)

ˇ      Nik Henderson: On a divergent series of Euler (Sum (-1)^k k!)

ˇ      Caleb Dilsavor: Wallis’s Product

ˇ      Johann Miller: Female Mathematicians: Hypatia, Maria Agnesi, Ada Lovelace

ˇ      Shuchen Mu: The Cayley-Hamilton Theorem

ˇ      Dan Brogan: Series into Continued Fractions (after Euler)

ˇ      Aidan Howells: Perfect Numbers

ˇ      Anthony Ciaverella: Variations on Buffon’s Needle

ˇ      John Johnson: Oresme’s irrational rotations

ˇ      Miles Calabresi: Conics

ˇ      Vilas Weinstein: The Quadrature of the Hyperbola

ˇ      Daniel Murphy: The projection of {z in C: |f(z)|≤2} onto a line (after Cebyshev and Polya)



Spring, 2017:


ˇ      Michael Crawshaw: A partial fraction series for the cotangent and Euler’s formulas for zeta(2k).

ˇ      Nik Henderson: Euler and Music: Euler’s Tentamen

ˇ      Desmond Coles

ˇ      Shuchen Mu

ˇ      Dan Brogan

ˇ      Aidan Howells

ˇ      Caleb Dilsavor

ˇ      Will Hoffer